

Recent results of the exotic hadron studies at CMS

Zhen Hu on behalf of the CMS Collaboration

the Compact Solenoid detector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

•

____η coverage (track & muon): [-2.5,2.5]

HCAL

ECAL

Hadron

Bectromagneti

Lead tungstate E/M Calorimeter (ECAL) Floctron

Charged Hadron (e.g. Pion)

Neutral Hadron (e.g. Neutron)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

CMS dimuon & trigger

Excellent detector for quarkonium

- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.

- μ p_T, ($\mu\mu$) p_T, ($\mu\mu$) mass, ($\mu\mu$) vertex, and additional μ Zhen Hu WIN2023 July 3-8, 2023

CMS played the following leading roles

First LHC experiment re-discovered X(3872)

First experiment to observe X(3872) in B_{S}^{0} decay

First experiment to see X(3872) signal in PbPb

$$X(3872) \rightarrow J/\psi \ \pi^+ \ \pi^- \rightarrow \mu^+ \ \mu^- \ \pi^+ \ \pi^-$$

4.2 *σ*

Phys. Rev. Lett. 128 (2022) 032001

CMS played the following leading roles

• First LHC experiment to see new exotic hadrons (Y(4140))

Phys. Lett. B 734 (2014) 261-281

The fitted mass and width

M = 4148.0 +/- 2.4 (stat.) +/- 6.3 (syst.) MeV

Γ = 28⁺¹⁵₋₁₁(stat.) +/- 19 (syst.) MeV

First confirmation of Y(4140)

Evidence for an additional peaking structure at higher mass also reported

https://www.nikhef.nl/~pkoppenb/particles.html

WIN2023

New domain of exotics: all-heavy tetra-quarks

• First mention of 4c states at 6.2 GeV (1975)

– Just one year after the discovery of J/ψ

We expect at least three exotic mesons with hidden charm, $c\bar{c}(p\bar{p}-n\bar{n})$ [between 3.7~4.1 GeV], $c\bar{c}\lambda\bar{\lambda}$ [~4.1 GeV] and $c\bar{c}c\bar{c}$ [~6.2 GeV] to which we refer

Research Institute for Fundamental Physics Kyoto University, Kyoto

(Received January 20, 1975)

• First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

L	S	ЈРС	Mass (GeV)					
1	0 1 2	$1^{} \\ 0^{-+}, 1^{-+}, 2^{-+} \\ 1^{} 2^{} 3^{}$	6.55	$\longleftarrow (cc)_{\underline{3}} * - (\overline{cc})_{\underline{3}}$			тРС	Maar (CaV)
2	0	2++	6.78			<u>د</u>	J	Mass (Gev)
	1 2	$1^{+-}, 2^{+-}, 3^{+-}$ $0^{++}, 1^{++}, 2^{++}, 3^{++}, 4^{++}$			1	0	1	6.82
2	-	3	6.08	$(cc) \sim \overline{(cc)} \ast \rightarrow$	2	0	2++	7.15
,	1	$2^{-+}, 3^{-+}, 4^{-+}$	0.98	$(\underline{c}\underline{c})\underline{6}$ $(\underline{c}\underline{c})\underline{6}$	3	0	3	7.41
	2	1 , 2 , 3 , 4 , 5						······································

• A different exotic system compared to exotics with light quarks

WIN2023

J/ψJ/ψ events—first evidence (1982)

PLB114 (1982) 457

Was interpreted as 2⁺⁺ 4-quark state

PLB158 (1985) 85

WIN2023

Possible explanations of $J/\psi J/\psi$ states

2⁺⁺ four-quark states, PRD29 (1984) 426

TABLE I. Parameters used in Eq. (8) to calculate the cross sections for vector-meson pair production. (+) and (-) denote two degenerate $2^{++} Q^2 \overline{Q}^2$ states. Except in the case of JJ, we take $4\pi/f_I^2 = 0.03$, due to the fact that the $2^{++} Q^2 \overline{Q}^2$ are expected to lie not far above the threshold. α_s is determined from Eq. (11).

·····	er landeste tribene recherchertere aus		Mj		
V_1V_2	$a_{V_1V_2}^i/a$	$b_{\alpha\beta}^{j} / \alpha_{s} \frac{a}{\sqrt{8}} \delta_{\alpha\beta}$	(GeV)	α_s	m_1
JJ	1/√3	$\left[\frac{2}{3}\right]^{1/2}\frac{4\pi}{f_{\perp}^2}$	7.0	0.18	3.10
$J\omega^{(+)}$	$1/\sqrt{6}$	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_L f_{\omega}}$	4.05	0.2	
$J\omega^{(-)}$	1/√12	$\left(\frac{2}{3}\right)^{1/2} \frac{4\pi}{f_{\perp}f_{\omega}}$	4.05	0.2	
$\Upsilon J^{(+)}$	1/√6	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\rm X}f_{\rm I}}$	13.5	0.167	-
ΥJ ⁽⁻⁾	1/√12	$\left(\frac{2}{3}\right)^{1/2} \frac{4\pi}{f_{\mathfrak{X}} f_{\mathfrak{Z}}}$	13.5	0.167	
$B_c^* \overline{B}_c^{*(+)}$	$-1/\sqrt{6}$	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\mathfrak{X}}f_{\mathfrak{Z}}}$	13.5	0.167	6.60
$B_c^* \overline{B}_c^{*(-)}$	1/√12	$\left(\frac{2}{3}\right)^{1/2}\frac{4\pi}{f_{\rm X}f_{\rm Z}}$	13.5	0.167	

WIN2023

(ccc	C) Phys. Rev. D	86, 034004 (2012)	
$0^{++'}$:	$M=5.966{\rm GeV},$	$M - M_{\rm th} = -228.{\rm MeV},$	Below double J/ψ threshold
$1^{+-'}$:	$M=6.051{\rm GeV},$	$M - M_{\rm th} = -142.{\rm MeV},$	Search via J/ψμ⁺μ⁻, J/ψ [*]
$2^{++}:$	$M=6.223{\rm GeV},$	$M - M_{\rm th} = 29.5 {\rm MeV}.$	Above double J/ψ threshold
(bbc	c)		Search via J/ψJ/ψ
$0^{++}a:$	$M = 12.359 \mathrm{GeV},$	$M-M_{ m th}=-191.{ m MeV}$	
$0^{++}b$:	$M=12.471{\rm GeV},$	$M - M_{\rm th} = -78.7 { m MeV},$	Below double B _c threshold
$1^{+-}a:$	$M=12.424{\rm GeV},$	$M-M_{\rm th}=-126.{\rm MeV}$	J/ψY(1S) threshold
$1^{+-}b$:	$M=12.488{\rm GeV},$	$M - M_{\rm th} = -62.5{\rm MeV},$?
$1^{++}:$	$M=12.485{\rm GeV},$	$M-M_{\rm th}=-64.9{\rm MeV},$	
$2^{++}:$	$M=12.566{\rm GeV},$	$M-M_{\rm th}=16.1{\rm MeV}.$	
(bbb	b)		Above double B. threshold
$0^{++'}$:	$M=18.754{\rm GeV},$	$M-M_{\rm th}=-544.{\rm MeV},$	$J/\psi Y(1S)$ threshold
$1^{+-'}$:	$M=18.808{\rm GeV},$	$M-M_{\rm th}=-490.{\rm MeV},$	Search via the above two channels
$2^{++}:$	$M=18.916{\rm GeV},$	$M - M_{\rm th} = -382. {\rm MeV}.$	$\mathbf{D}_{\mathbf{r}}$ is the set of $\mathbf{N}(\mathbf{r}, \mathbf{Q})$ there exists a left
			Below double $Y(1S)$ threshold Search via $Y(1S)\mu^+\mu^-$

Many recent theoretical studies on (cccc), (bbbb), (bbcc):

WIN2023

- controversial on existence of bound states below $\eta_b \eta_b$ (or $\eta_c \eta_c$) threshold;
- consistent on existence of resonant states above $\eta_b \eta_b$ (or $\eta_c \eta_c$) threshold.

July

 $J/\psi J/\psi$ studies at LHCb and ATLAS

• LHCb observed X(6900) in $J/\psi J/\psi$

- ATLAS fully-charmed exotic states
 - Confirmation of X(6900) in $J/\psi J/\psi$
 - Evidence of structures in $J/\psi\psi(2S)$

2nd bump alone: 3 σ

WIN2023

- Signal: $X \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Signal MC samples:
 - $J^P = 0^+$ resonance

Generator: Pythia8, JHUGen

- Main background:
 - Nonresonant single-parton scattering (NRSPS)
 Generator: Pythia8, HelacOnia (next-to-next-to-leading order),
 Cascade (next-to-leading order)
 - Nonresonant double-parton scattering (NRDPS)
 - Generator: Pythia8
 - Combinatorial background

WIN2023

CMS J/ ψ J/ ψ cross section at 7 TeV

Total cross section, assuming unpolarized prompt J/ ψ J/ ψ pair production 1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb

Different assumptions about the $J/\psi J/\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

WIN2023

We saw hints at Run I data (7 TeV & 8 TeV) Proposed three signal regions for Run II data

Signal: $X \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Blinded mass windows for Run II:

- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)

These mass windows will be windows for LEE for potential structures

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result (13 TeV, 2020)

WIN2023

CMS J/ ψ J/ ψ candidates at 13 TeV

July 3-8, 2023

14

Zhen Hu

WIN2023

CMS background (SPS + DPS + **BW0**) 135 fb⁻¹ (13 TeV) Candidates / 25 MeV **CMS** Supplementary 160 140 Data Fit 120 BW₁ - · - BW₀ 100 $\chi^2 prob = 79\%$ $- - BW_{2}$ • NRSPS 80 BW₃ DPS [6.2,15] GeV 60 40 20 <u>Data-Fit</u> itat. unc. 12 13 14 $m_{\mathrm{J/\psi},\mathrm{J/\psi}}$ [GeV]

- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - BW0 parameters very sensitive to SPS and DPS model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...

- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - BW0 parameters very sensitive to SPS and DPS model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- SPS+DPS+BW0 as our background

CMS model: 3 BWs + Background

The dips

- > Possibility #1:
- Interference among structures?
- Possibility #2:
- Multiple fine structures to reproduce the dips?

WIN2023

• Mentioned in PAS

- More secrets to dig out
- We explored possibility #1 in detail

Exploration of possible interference among BWs

- Explored fit with interference among various combinations of BWs
- Pdf for three BW interference

 $Pdf(m) = N_{X_0} \cdot |BW_0|^2 \otimes R(M_0)$

+ N_{NRSPS} : $f_{SPS}(m)$ + N_{NRDPS} : $f_{DPS}(m)$ ·

Studied many ways interference due to possible J^{PC} and quantum coherence

+ $N_{X and interf} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2$

- 2-object-interference among BW0, BW1, BW2, BW3
- 3-object-interference among BW0, BW1, BW2, BW3
- 4-object-interference among BW0, BW1, BW2, BW3

Final CMS choice: interference among BW1, BW2, BW3

Interf. term

CMS interference fit

https://arxiv.org/abs/2306.07164

- Fit with interf. among BW1, BW2, and BW3 describes data well
- Measured mass and width in the interference fit

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Γ(6900)	
LHCb [15]	Model I	unrep.	unrep.	$6905 \pm 11 \pm 7$	$80\pm19\pm33$	
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24	

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Γ(6900)	
LHCb [15]	Model I	unrep.	unrep.	$6905 \pm 11 \pm 7$	$80\pm19\pm33$	
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24	

- LHCb did not give parameters for BW1
 - CMS has a shoulder before BW1
 - helps make BW1 distinct

• Does not describe 2 dips well

WIN2023

CMS and LHCb Fit Comparison - 2

Fit CMS data with LHCb model II : "X(6700)" interferes with NRSPS + X(6900) + Bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886\pm11\pm11$	$1\overline{68}\pm\overline{33}\pm\overline{69}$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40

CÉRN

WIN2023

CMS and LHCb Fit Comparison - 2

Fit CMS data with LHCb model II : "X(6700)" interferes with NRSPS + X(6900) + Bkg

• CMS obtained larger amplitude and wider width for X(6700)

CÉRN

CMS and LHCb Fit Comparison - 2

Fit CMS data with LHCb model II : "X(6700)" interferes with NRSPS + X(6900) + Bkg

ERN

.

Zhen Hu

WIN2023

CMS and ATLAS Fit Comparison

- ATLAS model A: analogous to LHCb model I, but 2 auxiliary BWs interfere with X(6900)
- ATLAS Model B: analogous to LHCb model II, one auxiliary BW interferes with NRSPS
- Both models describe the data well
 - the broad structure at the lower mass could result from other physical effects, such as the feed-down
- The 3rd peak mass is consistent with the LHCb observed X(6900), with significance > 5 σ

ATLAS-CMS-LHCb data comparison

Disclaimer: comparison plots in this page are not made by ATLAS/CMS/LHCb (taken from https://indico.cern.ch/event/1158681/contributions/5162594/)

- Comparing with LHCb, CMS has:
 - 135/(3+6) ≈ <mark>15X</mark> int. lum.
 - $(5/3)^4 \approx 8X$ muon acceptance
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

- Comparing with CMS, ATLAS has:
 - 1/3 –1/2 of CMS data (trigger?)
 - dR cut—remove high mass events

WIN2023

Table 1. Predictions of the masses (MeV) of S-wave fully heavy $T_{4Q}(nS)$ tetraquarks. Only 0⁺⁺ and 2⁺⁺ are considered for $T_{bc\bar{b}\bar{c}}$. The uncertainty is from the coupling constant $\alpha_s = 0.35 \pm 0.05$.

Nucl. Phys. B 966 (2021) 115393

T _{4Q} (<i>nS</i>) states	J^p	Mass(n=1)	-Mass(n-2)	Mass(n - 2)	191a55(<i>n</i> =4)
$T_{ccar{c}ar{c}}$	0++	6055^{+69}_{-74}	$6555\substack{+36\\-37}$	6883^{+27}_{-27}	$7154\substack{+22\\-22}$
	2++	$6090\substack{+62\-66}$	0500^{+34}_{-35}	$cccc^{+27}_{-26}$	7100_{-22}
$T_{ccar car c}^\prime$	0++	5984_{-67}^{+64}	6468	6725^{+26}_{-26}	66^{+21}_{-22}
$T_{bcar{b}ar{c}}$	0++	$12387\substack{+109\\-120}$	12911^{+3}_{-3}	13200^{+35}_{-36}	$13429\substack{+29\\-30}$
	2++	$12401\substack{+117 \\ -106}$	$12914\substack{+49\\-49}$	$13202\substack{+35\\-36}$	$13430\substack{+29\\-29}$
$T_{bcar{b}ar{c}}'$	0++	$12300\substack{+106\\-117}$	$12816\substack{+48\\-50}$	$13.04\substack{+35 \\ -35}$	$13333^{+29}_{-29} \\$
$T_{bbar{b}ar{b}}$	0++	$18475\substack{+151 \\ -169}$	19073^{+59}_{-63}	$19.53\substack{+42 \\ -42}$	$19566\substack{+33\\-35}$
	2++	$18483\substack{+149\\-168}$	$19075\substack{+59\\-62}$	$19\ 55^{+41}_{-43}$	$19567\substack{+33\\-35}$
$T_{bb\overline{b}\overline{b}}^{\prime}$	0++	$18383\substack{+149\\-167}$	18976^{+59}_{-62}	$19\ 56^{+43}_{-42}$	$19468\substack{+34\\-34}$
		S-wave	M[BW1] M[BW2 M[BW3	= 6638 ± 10 MeV] = 6847 ± 9 MeV] = 7134 ± 19 MeV	0 ± 12 0 ± 5 9 ± 5

- Radial excited p-wave states (like J/ψ series)?
- Or Radial excited S-wave states?
- Theoretical situation difficulty & confusing
 - Important next step: measure J^{PC} to clarify
- Natural question: what about YY final state?

Data-Fit Candidates / 25 MeV	180 160 140 120 100 80 60 40 20 0 2 0 -2 -2				7.5	Dat BW BW W/C	a — Fit Bw; Bacl Dinte	135 15 ¹ (13 1 CMS kground Ff.	S _o Let Candidate (25 MeV Data-Fit	180 160 140 120 100 80 60 60 60 60 60 60 60 60 60 60 60 60 60	6.5	interfering BWs W/ interf. 7 7.5 8 8.5 m _{JyyJy} [GeV]
$1^{1}P_{1}$	1-	- 36	3.9	320.3	-366.7	337.5	-14.4	0	0	-2.6	6553	
$1^{\circ}P($	0	35	0.7	320.2	-300.7	337.3	-(.2	-50.9	-43.1	-2.0	6460	6398.1 $\eta_c(1S)\chi_{c0}(1P)$
$1^{3}P_{1}$	1-	+ 35	6.6	320.3	-366.7	337.5	-7.2	-28.4	21.5	-2.7	6554	6494.1 $\eta_c(1S)\chi_{c1}(1P)$
$1^{3}P_{2}$	2-	+ 35	6.6	320.2	-366.7	337.5	-7.2	28.4	-2.1	-2.4	6587	6539.6 $\eta_c(1S)\chi_{c2}(1P)$
$1^{5}P_{1}$	1-	- 34	2.4	320.4	-366.7	337.5	7.2	-85.3	-30.2	-2.7	64.9	6508.8 $\eta_c(1S)h_{c1}(1P)$
$1^{5}P_{2}$	2-	- 34	2.2	320.2	-366.7	337.5	7.2	-28.4	30.2	-2.5	657	6607.6 $J/\psi(1S)\chi_{c1}(1P)$
$1^{5}P_{3}$	3-	- 34	2.3	320.3	-366.7	337.5	7.2	56.9	-8.6	-2.5	6623	6653.1 $J/\psi(1S)\chi_{c2}(1P)$
$2^{1}P_{1}$	1-	- 41	4.7	688.7	-263.4	548.6	-11.2	0	0	-1.6	6925	arXiv:2108 04017 [hen-nh]
$2^{\circ}P_{0}$	0_0_	+ 41	0.0	689.6	-263.4	548.6	-5.6	-46.2	-34.5	-1.7	6851	
$2^{3}P_{1}$	1-	+ 41	0.0	689.6	-263.4	548.6	-5.6	-23.1	17.2	-1.6	6926	
$2^{3}P_{c}$	2^{-}	+ 41	0.0	689.6	-263.4	548.7	-5.6	23.1	-3.4	-1.7	6951	
$2^5 P_1$	1-	- 39	8.7	689.5	-263.4	548.6	-5.6	-69.3	-24.2	-1.7	6845	P-wave
$2^{5}P_{2}$	2^{-}	- 39	8.7	689.5	-263.4	548.6	5.6	-23.1	24.2	-1.5	6944	•
$2^5 P_3$	3-	- 39	8.8	689.7	-263.4	548.6	5.6	46.2	-6.9	-1.6	6982	- M[BW1] = 6552 ± 10 ± 12
$3^{1}P_{1}$	1-	- 47	9.8	982.2	-215.5	727.8	-9.3	0	0	-1.1	7221	- MeV
$3^{\circ}P_{0}$	0	+ 47	5.2	982.7	-215.5	727.7	-4.6	-41.9	-31.0	-1.2	7153	MIBW21 = 6927 + 9 + 5
${}^{3}P_{1}$	1-	+ 47	5.1	982.6	-215.5	727.7	-4.6	-20.9	15.5	-1.2	7220	
3 ³ Pc	2^{-}	+ 47	5.1	982.6	-215.5	727.8	-4.6	20.9	-3.1	-1.0	7243	
$3^{\circ}P_1$	1-	- 46	5.9	982.8	-215.5	727.7	4.6	-62.8	-21.7	-1.2	7150	- M[BW3] = 7287 ± 19 ± 5
$3^5 P_2$	2-	- 46	5.7	982.6	-215.5	727.8	-4.6	-20.9	21.7	-1.1	7236	- ⁻ MeV

982.6 - 215.5 727.8

Zhen Hu

First observation of triple J/ ψ production

Signal yield: $5^{+2.6}_{-1.9}$ events Significance > 5σ

 $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X)$ = 272 +141-104 (stat) ± 17 (syst) fb

Nature Physics 19 (2023) 338

"6c" search in future?

WIN2023

Summary

- CMS played leading roles in some exotic hadron studies
- All-heavy quark exotic structures offer a system easier to understand
 - A new window to understand strong interaction
- CMS found 3 significant structures in di-J/ψ mass spectrum
 - X(6900) consistent with LHCb
 - First observation of X(6600) and evidence of X(7300) in di-J/ψ
 - Dips in data show possible interference effects
 - A family of structures which are candidates for all-charm tetra-quarks!
 - <u>https://arxiv.org/abs/2306.07164</u> (Submitted to PRL)

X(6600) event display

- Triple J/ ψ production has also been observed for the first time

WIN2023

Backup

WIN2023

- Study interplay of soft QCD with (semi)hard QCD and EW physics
- Sensitivity to perturbative heavy flavor generation and nonperturbative initial and final state effects
 - Initial state: e.g. sensitivity to the concepts of single (SPS), double (DPS) and triple (TPS) parton scattering

• Final state: e.g. sensitivity to heavy flavour hadron formation (colour singlet vs. colour octet), sensitivity to resonant multi-heavy-flavor states

Event selections

Muon selection

- $p_T(\mu^{\pm}) > 2.0 \text{ GeV/c}$
- $|\eta(\mu^{\pm})| < 2.4$
- All muons are soft
- For 2017-18 years: $p_T(\mu^{\pm}) > 3.5 \text{ GeV/c}$ for at least one $\mu^+\mu^-$ pair, which has $vtxprob(\mu^+\mu^-) > 0.5\%$ and 2.95 < $m_{\mu^+\mu^-} < 3.25 \text{ GeV}$

 J/ψ selection

- •2.95 < $m_{J/\psi}$ < 3.25 GeV
- • $p_T(J/\psi) > 3.5 \text{ GeV/c}$
- • $vtxprob(J/\psi) > 0.5\%$
- •Constrained $vtxprob(J/\psi) > 0.1\%$

 $\frac{J/\psi J/\psi \text{ selection}}{vtxprob(4\mu) > 0.5\%}$ $\frac{vtxprob(J/\psi J/\psi) > 0.1\%}{vtxproper HLT \text{ is fired in event}}$

Multiple candidates

•Choose the best candidate with minimum $\left(\frac{M(J/\psi_1) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_1))}\right)^2 + \left(\frac{M(J/\psi_2) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_2))}\right)^2$ value if there are 4 muons in event, but more than one candidate (~0.2%) •Keep all candidates if there are more then 4 muons in event (~0.2%)

Baseline mass variable – invariant mass of two constrained J/ ψ candidates

WIN2023

- To include systematics, alternative resonance/background shapes applied in the fit.
- Calculate signal- and null-hypothesis *NLL_syst* including systematic using:

 $NLL_(syst-sig) = Min\{NLL_(nom-sig), NLL_(alt-i-sig)+0.5+0.5\cdot\Delta dof\}$

- \square *NLL_(nom-sig)*: the NLL of nominal 'signal hypothesis' fit.
- \square *NLL_(alt-i-sig)*: the NLL of i-th alternative fit of 'signal hypothesis'
- $NLL_(syst-null) = Min\{NLL_(nom-null), NLL_(alt-j-null)+0.5+0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from *NLL_(syst-null)-NLL_(syst-sig)*

	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

Line shape

• S-wave relativistic Breit-Wigner (used in default fit):

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}$$
, where $\Gamma(m) = \Gamma_0 \frac{qm_0}{q_0 m}$,

q is the momentum of a daughter in the mother particle rest frame; q_0 means the value at peak position ($m = m_0$).

• NRSPS and NRDPS:

 $f_{NRSPS}(x, x_0, \alpha, p_1, p_2, p_3)$

$$= (x - x_0)^{\alpha} \cdot \left(1 - \left(\frac{1}{(15 - x_0)^2} - \frac{p_1}{10}\right) \cdot (15 - x)^2\right) \cdot \exp\left(-\frac{(x - x_0)^{p_3}}{2 \cdot p_2^{p_3}}\right),$$

$$f_{NRDPS}(x, a, p_0, p_1, p_2) = \sqrt{x_t} \cdot \exp(-a \cdot x_t) \cdot (p_0 + p_1 \cdot x_t + p_2 \cdot x_t^2),$$

where $x_0 = 2m_{J/\psi}, x_t = x - x_0$

Zhen Hu

WIN2023

Significance with systematics

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
momentum scaling	1	3	4	-	-	-
mass resolution	< 1	< 1	< 1	< 1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
efficiency	< 1	< 1	< 1	1	< 1	1
feeddown shape	11	1	1	25	8	6
total	12	5	5	34	19	20

- Investigated effects of systematics on local significance by a profiling procedure
- A discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to $>5.7\sigma$
 - No relative significance changes for BW2 and BW3

 $M[BW1] = 6552 \pm 10 \pm 12 \text{ MeV} \quad \Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV} >5.7\sigma$ $M[BW2] = 6927 \pm 9 \pm 5 \text{ MeV} \quad \Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV} >9.4\sigma$ $M[BW3] = 7287 \pm 19 \pm 5 \text{ MeV} \quad \Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV} >4.1\sigma$

Systematic uncertainties for interf. case

Fit	Dominant sources	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
Interference	Signal shape	7	12	7	56	8	7
interrerence	NRDPS	. 1	3	2	18	6	2
	NRSPS	9	14	13	85	9	20
	Resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	< 1	5	3	2
	Feeddown shape	-27	+44	+38	-208	+19	+12
	Full uncertainty	$+16\\-31$	$^{+48}_{-20}$	$^{+41}_{-15}$	$^{+109}_{-235}$	$^{+25}_{-17}$	$^{+29}_{-26}$

- Total systematic uncertainty is quadrature sum of each source
- Systematic uncertainties from feeddown contribution are asymmetric
- Systematic uncertainties from other sources are symmetric

LHCb collaboration/Science Bulletin 65 (2020) 1983–1993

Fig. 4. Invariant mass spectra of weighted di- J/ψ candidates in bins of $p_T^{\text{di-}J/\psi}$ and overlaid projections of the $p_T^{\text{di-}J/\psi}$ -binned fit with model I.

July 3-8, 2023

WIN2023

Zhen Hu

1911-

