

Lepton Flavor Universality Experimental Highlights

Liang Sun Wuhan University

July/05/2023

Outline

- LFU tests in (semi-)leptonic D decays (Charged currents)
- LFU tests in semi-leptonic B decays (Charged currents)
- LFU tests in rare B decays (Neutral currents)

Summary

Disclaimer: A much biased personal selection of experimental results

Charged currents versus neutral currents

- One charged lepton in the final state
- Tree level
- Theoretically clean
- Abundance of data
- Experimentally challenging due to missing neutrino

- Dilepton final states
- Forbidden at tree level in SM
- Sensitive to NP
- Highly suppressed, statistically limited in experiments
- Mainly on e- μ asymmetry

Experimental status on B anomalies @ WIN2021

How coherent is the pattern of deviations?

[Scholarpedia, arXiv:1606.00999] [All plots]

 R_K , R_{K^*} : LHCb [arXiv:2103.11769] [JHEP 08 (2017) 055] vs [Bordone, Isidori, Pattori EPJC 76 (2016) 440].

R_{pK} LHCb [JHEP 05 (2020) 040].

 P'_5 my average of LHCb [PRL 125 (2020) 011802], CMS [PLB 781 (2018) 517], ATLAS [JHEP 10 (2018) 047] vs [Bharucha et al., JHEP 08 (2016) 098].

 $B_s^0 \rightarrow \phi \mu^+ \mu^-$ [LHCb-PAPER-2021-014] vs [Horgan et al.] via [FLAVIO].

 $B \rightarrow \mu^+ \mu^-$ combination [Hurth et al.] of LHCb [LHCb-PAPER-2021-007], CMS [JHEP 04 (2020) 188], ATLAS [JHEP 04 (2019) 098] vs [Beneke, Bobeth, Szafron, JHEP 10 (2019) 232].

Muon g - 2 [Muon g - 2, PRL 126 (2021) 141801] vs [Aoyama et al., Phys. Rept. 887 (2020) 1].

 $R(D^{(*)})$ [HFlav].

 $\mathcal{B}(B^+ \to \tau \mu)$ [UTFit].

25

4

Experimental status on B anomalies @ WIN2021 A coherent pattern on LFU?

How coherent is the pattern of deviations?

[Scholarpedia, arXiv:1606.00999] [All plots]

 R_K , R_{K^*} : LHCb [arXiv:2103.11769] [JHEP 08 (2017) 055] vs [Bordone, Isidori, Pattori EPJC 76 (2016) 440].

R_{pK} LHCb [JHEP 05 (2020) 040].

 P'_5 my average of LHCb [PRL 125 (2020) 011802], CMS [PLB 781 (2018) 517], ATLAS [JHEP 10 (2018) 047] vs [Bharucha et al., JHEP 08 (2016) 098].

 $B_s^0 \rightarrow \phi \mu^+ \mu^-$ [LHCb-PAPER-2021-014] vs [Horgan et al.] via [FLAVIO].

 $B \rightarrow \mu^+ \mu^-$ combination [Hurth et al.] of LHCb [LHCb-PAPER-2021-007], CMS [JHEP 04 (2020) 188], ATLAS [JHEP 04 (2019) 098] vs [Beneke, Bobeth, Szafron, JHEP 10 (2019) 232].

Muon g - 2 [Muon g - 2, PRL 126 (2021) 141801] vs [Aoyama et al., Phys. Rept. 887 (2020) 1].

 $R(D^{(*)})$ [HFlav].

 $\mathcal{B}(B^+ o au \mu)$ [UTFit].

25

5

Major experiments for LFU tests

colliders

Experimental challenges for LFU tests

- Hadronic part: most of uncertainties cancel in the ratio at 1st order
- Missing neutrinos for (semi-)leptonic processes:
 - e⁺e⁻ machines: inferred using beam condition & mising info
 - Hadron machines: more difficult, using info such as decay vertices, isolation info, kinematics of visible part, etc
- Electron: generally more difficult in experiments such as LHCb
- Muon: difficuties in μ/π separation for low-P tracks @ BESIII
- Tau lepton: short lifetime, decaying into final states with $\geq 1\nu$
 - e⁺e⁻ machines: $\tau \to e\overline{\nu}\nu, \mu\overline{\nu}\nu, \pi(\pi^0)\nu$
 - Hadron machines: $\tau \rightarrow \mu \overline{\nu} \nu$, $\pi \pi \pi (\pi^0) \nu$

LFU tests in (semi-)leptonic D decays @ BESIII

Details can also be found in Zehui's talk "Charmed mesons decays at BESIII"

Situation before BESIII

• Tension in charm sector

 Poor knowledge in semimuonic charm decays

World's largest threshold D meson samples

- $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$, $\mathcal{L}_{int} = 2.93 + 4.98$ (+12) fb⁻¹
- $e^+e^- \rightarrow D_s D_s^*$, $\sqrt{s} = 4.128 4.226$ GeV, $\mathcal{L}_{int} = 7.33$ fb⁻¹
- · Advantages: Clean, double tag method

World's largest threshold D meson samples

Advantages: Clean, double tag method

Double-tag method for (semi-)leptonic decays

Tag modes

•
$$\bar{D}^0 \rightarrow K^+ \pi^-$$
, ...

- $D^- \rightarrow K^+ \pi^- \pi^-$, ...
- $D_{\rm s}^-
 ightarrow {\rm K}^+ {\rm K}^- \pi^-$, ...

Missing neutrino is determined by

•
$$U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$$

• $E_{\text{miss}} = E_{\text{cm}} - E_{\text{tag}} - E_P - E_{\ell^+}$

Branching fraction

•
$$N_{\text{tag}} = 2N_{D\bar{D}}\mathcal{B}_{\text{tag}}\epsilon_{\text{tag}}$$

•
$$N_{\rm DT} = 2N_{D\bar{D}}\mathcal{B}_{\rm tag}\mathcal{B}_{\rm sig}\epsilon_{\rm DT}$$

•
$$\mathcal{B}_{\mathrm{sig}} = \frac{N_{\mathrm{DT}}}{N_{\mathrm{tag}}\epsilon_{\mathrm{DT}}/\epsilon_{\mathrm{tag}}}$$

•
$$M_{\text{miss}}^2 = E_{\text{miss}}^2 - |\vec{p}_{\text{miss}}|^2$$

• $\vec{p}_{\text{miss}} = -\vec{p}_{\text{tag}} - \vec{p}_P - \vec{p}_{\ell^+}$

12

$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2}}{8\pi} f_{D_{(s)}^{+}}^{2} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$

- The electron channels are strongly suppressed due to mass
- The branching ratios $R_{\tau/\mu}$ are determined by the lepton and D masses in the SM

LFU test with $D^+ \rightarrow \ell^+ \nu_\ell$, $\ell = \mu, \tau$

Studies of $D_s^+ \rightarrow \mu^+ \nu_{\mu}$

3.19 fb⁻¹@4.18 GeV

PRL122(2019)071802

 $B[D_s^+ \to \mu^+ v] = (5.49 \pm 0.16 \pm 0.15) \times 10^{-3}$

 $\mathbf{f}_{D_{s}^{+}}|\mathbf{V}_{cs}|=(246.2\pm3.6\pm3.5)~\text{MeV}$

Precision~2.1%

6.3 fb⁻¹@4.18-4.23GeV PRD104(2021)052009 μ–like^{E_{EMC} < 300 MeV} without µ counter information π–like E_{EMC} > 300 MeV $D_s^+ \to \mu \nu$ 0.1 0.15 0.2 $D_{s}^{+} \rightarrow \tau \nu$ M²...(GeV/o²)² $M_{\rm m}(D_s)({\rm MeV}/c^2)$ 2198±55

 $B[D_s^+ \to \mu^+ \nu] = (5.35 \pm 0.13 \pm 0.16) \times 10^{-3}$ $f_{D_s^+}|V_{cs}| = (243.1 \pm 3.0 \pm 3.7) \text{ MeV}$ $Precision \sim 2.0\%$ 15

₩S

Studies of $D_s^+ \rightarrow \tau^+ \nu_{\tau}$ (I)

PRD104(2021)032001

 $D_s^+ \to \tau^+(\rho^+ v) v$

6.3 fb⁻¹ 1745±84 4.189 GeV 4.199 GeV 4.226 GeV 4.219 Ge MM² (GeV²/c⁴) $B[D_s^+ \to \tau^+ \nu] = (5.29 \pm 0.25 \pm 0.20)\%$

 $f_{D_s^+}|V_{cs}| = (244.8 \pm 5.8 \pm 4.8) \text{ MeV}$

PRD104(2021)052009

 $D_s^+ \rightarrow \tau^+(\pi^+ v)v$

 E_{extra}^{tot} : total energy of good EMC showers not associated with e⁺

PRL127(2021)171801

 $D_s^+ \to \tau^+(e^+ \nu \nu) \nu$

The most

precise to date

Summary of LFU test with $D_s^+ \rightarrow \ell^+ \nu_\ell$

(T T T	_,, arXi	v:2303.12468	$\mathcal{R}_{\tau/\mu} = \frac{\mathcal{B}_{D_s^+ \to \tau^+ \nu_\tau}}{\mathcal{B}_{D_s^+ \to \tau^+ \nu_\tau}} = \frac{m_{\tau^+}^2 (1 - \frac{m_{\tau^+}^2}{m_{D_s^+}^2})^2}{2 (1 - \frac{m_{\tau^+}^2}{m_{\tau^+}^2})^2}$
CLEO	PRD79(2009)052	002 , τ _e ν	5.32±0.47±0.22	—	$D_s \to \mu^+ \nu_\mu = m_{\mu^+}^2 (1 - \frac{\mu^+}{m_{\mu^+}^2})^2$
CLEO	PRD80(2009)112	004 , τ _ρ ν	$5.50 \pm 0.54 \pm 0.24$	┣━━━╫	$D_{\tilde{s}}$
CLEO	PRD79(2009)052	001 , $\tau_{\pi} v$	$6.47 {\pm} 0.80 {\pm} 0.22$	L - - - - - - - - - -	$R_{-4.0}^{SM} = 9.75 \pm 0.01$
BaBar	PRD82(2010)091	103, $\tau_{e,\mu}v$	4.96±0.37±0.57	++++	$-\tau/\mu$ =
Belle	JHEP09(2013)13	9 , τ _{e,μ,π} ν	5.70±0.21±0.31	H+H	With PDG input of $B(D_s^+ \rightarrow \mu^+ \nu_{\mu})$
BESIII 6.32 fb	-1 PRD104(2021)05	2009, τ _π ν	5.21±0.25±0.17	₩⊷-1	we have:
BESIII 6.32 fb	-1 PRD104(2021)03	2001 , τ _ρ ν	5.29±0.25±0.23	H ● H	
BESIII 6.32 fb	-1 PRL127(2021)17	1801, $\tau_{e}v$	5.27±0.10±0.12	Hel	BESIII only result:
BESIII 7.33 fb	⁻¹ arXiv:2303.12600) [hep-ex], τ_{π}	5.41±0.17±0.13	н	$R^{BESIII} = 9.79 \pm 0.33$
BESIII 7.33 fb	-1 this work $\tau_{\mu} v$		5.34±0.16±0.10	H	$\pi_{\tau/\mu} = 9.79 \pm 0.00$
BESIII	τν	i i l	5.32±0.07±0.07	Combined	All included:
	-5	0		5	$R_{\tau/\mu}^{Exp} = 9.86 \pm 0.32$
	B(E	$\mathbf{D}_{\mathbf{s}}^{+} \rightarrow \tau^{+} \mathbf{v}$	(%)		Good agreement with SM value

$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2}{24\pi^3} |f_+^h(0)|^2 |V_{cq}|^2 |\vec{p}_h|^3$$

• Test of light lepton universality with branching ratios of e/μ

LFU tests with $D^0 \to K^- \ell^+ \nu_\ell$

BEST

Studies of $D \rightarrow (P,V)\mu^+\nu_{\mu}$

First observations

 $D^+ \rightarrow \omega \mu^+ v$

 $D^+ \rightarrow \eta \mu^+ v$

$$R_{D\eta} = \frac{\Gamma[D^+ \to \eta \mu^+ \nu]}{\Gamma[D^+ \to \eta e^+ \nu]} = 0.91 \pm 0.13$$

PRD101(2020)072005

 $B[D^+ \to \omega \mu^+ \nu] = (0.177 \pm 0.018 \pm 0.011)\%$

$$R_{D\omega} = \frac{\Gamma[D^+ \to \omega \mu^+ \nu]}{\Gamma[D^+ \to \omega e^+ \nu]} = 1.05 \pm 0.14$$

 $D^0 o
ho^- \mu^+ v$

PRD104(2021)L091103

 $B[D^0 \to \rho^- \mu^+ \nu] = (0.135 \pm 0.009 \pm 0.009)\%$

$$R_{D\rho} = \frac{\Gamma\left[D^0 \to \rho^- \mu^+ \nu\right]}{\Gamma\left[D^0 \to \rho^- e^+ \nu\right]} = 0.90 \pm 0.11$$

III $LFU tests with <math>D_{(s)} \rightarrow (P,V)\ell^+\nu_\ell$: summary

		BF ratios	SM	References		
μ/ e	$D^0 \to K^-$	$0.978 \pm 0.007 \pm 0.012$	0.975	PRL122(2019)011804		
	$D^0 \to \pi^-$	$0.922 \pm 0.030 \pm 0.022$	0.985	PRL121(2018)171803		
	$D^0 \to \rho^-$	0.90 ± 0.11	0.93-0.96	PRD104(2021)091003		
	$D^+ \to \overline{K}{}^0$	1.00 ± 0.03	0.975	EPJC76(2016)369		
	$D^+ \rightarrow \pi^0$	$0.964 \pm 0.037 \pm 0.026$	0.985	PRL121(2018)171803		
	$D^+ \rightarrow \omega$	1.05 ± 0.14	0.93-0.99	PRD101(2020)072005		
	$D^+ \rightarrow \eta$	0.91 ± 0.13	0.97-0.98	PRL124(2020)231801		
	$D_s^+ \rightarrow \eta$	0.86 ± 0.29	0.97-0.98			
	$D_s^+ \rightarrow \eta'$	1.14 ± 0.68	~0.95	PRD97(2018)012006		
	$D_s^+ \rightarrow \phi$	1.05 ± 0.24	0.92-0.95			
	$\Lambda_c^+\to\Lambda$	$0.96 \pm 0.16 \pm 0.04$	0.97	PLB767(2017)42		
H.L. Ma, Mini-Workshop on BESIII Physics 500 Publications						

LFU tests in semi-leptonic B decays

 $B^0 \rightarrow D^{*} \tau^* v$

R(D^(*)) measurements @ LHCb

Muonic $\tau \rightarrow \mu \overline{\nu} \nu$:

- Large statistics
- Study of τ and μ modes in one dataset
- Can measure R(D) and R(D*) simultaneously

Hadronic $\tau \rightarrow \pi\pi\pi(\pi^0)\bar{\nu}$:

PV

- Relatively high purity ٠
- External BR measurement for normalization

 \overline{D}^0

 D^{*-}

 B^0

- Decay vertex of τ well measured to suppress dominant backgrounds
- 3π dynamics important for the separation of B-> D*DX backgrounds

R(D^(*)) measurements @ LHCb

Hadronic $\tau \rightarrow \pi \pi \pi (\pi^0) \nu$

Considerable systematic uncertainty due to limited sample sizes

Updated R(D^(*)) world averages

- Updates with inclusion of two new results (LHCb22, LHCb23):
 - $R(D^*) = 0.284 \pm 0.013$
 - $R(D) = 0.356 \pm 0.029$
- Deviation from SM for combined R(D) – R(D*) now moves from 3.3σ to 3.2σ

From **HFLAV**

Recent BESIII measurements on $D_{(s)} \rightarrow 3\pi X$ [arXiv:2212.13072, arXiv:2301.03214] could be helpful in understanding double-charm backgrounds in hadronic R(D*) measurements

Updated R(D^(*)) world averages

- Updates with inclusion of two new results (LHCb22, LHCb23):
 - $R(D^*) = 0.284 \pm 0.013$
 - $R(D) = 0.356 \pm 0.029$
- Deviation from SM for combined R(D*) now at 1.9σ

From <u>HFLAV</u>

arXiv:2301.08266

$R(X_{e/\mu})$ in semileptonic B decays

- Hadronic tagging with a fully reco'ed B_{tag}
- Distribution of lepton momentum in B_{sig} rest frame fitted to extract signals
- Most precise LFU result in b-sector:

 $R(X_{e/\mu}) = 1.007 \pm 0.009 \text{ (stat)} \pm 0.019 \text{ (syst)}$

- In agreement with SM based prediction of 1.006 ± 0.001 [arXiv:2207.03432]
- In agreement with BELLE measurements in exclusive D^{*}ℓv channels [e.g. arXiv:2301.07529]
- Also e/µ difference in angular asymmetries in $B^0 \rightarrow D^{*-} \ell \nu$ reported <u>here</u>

(4S)

 $B_{\rm sig}$

le'

LFU tests in rare b-hadron decays

LFU tests in $b \rightarrow s\ell^+\ell^-$ decays

- $b \rightarrow s\ell^+\ell^-$ FCNC processes highly suppressed in SM
- NP may manifest in the loops and cause LFU violation
- LFU tests use $q^{2} = m(\ell^{+}\ell^{-})^{2}$ $R_{X} = \frac{\int_{q_{\min}}^{q_{\max}} \frac{d\mathcal{B}(B_{q} \rightarrow X_{s}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{\min}}^{q_{\max}^{2}} \frac{d\mathcal{B}(B_{q} \rightarrow X_{s}e^{+}e^{-})}{dq^{2}} dq^{2}}$
 - Cancellation of hadronic uncertainties in the ratio => precise prediction of R_X

R(K^(*)) measurements @ LHCb

- Electrons & muons behave guite differently in the LHCb detector
- Lower efficiencies & worse resolution (energy loss) for electrons
- Double-ratio of branching fractions:

$$R_X = \frac{\mathcal{B}(B_q \to X_s \mu^+ \mu^-)}{\mathcal{B}(B_q \to X_s J/\psi(\mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B_q \to X_s J/\psi(e^+ e^-))}{\mathcal{B}(B_q \to X_s e^+ e^-)}$$

- Most of systematic uncertainties cancel to 1st order
- LFU in $J/\psi \rightarrow \ell^+ \ell^-$ well established at % level [BESIII, PRD 88, 032007 (2013)]
- Validated in $\psi(2S)$ mode

arXiv:2212.09152

arXiv:2212.09153

arXiv:2212.09152 arXiv:2212.09153

R(K^(*)) results @ LHCb

• Most precise LFU test in $b \rightarrow s\ell^+\ell^-$ decays

• Supersedes previous results

arXiv:2212.09152 arXiv:2212.09153

R(K^(*)) results @ LHCb

• Most precise LFU test in $b \rightarrow s\ell^+\ell^-$ decays

- Supersedes previous results
- Improved systematics of mis-IDed hadronic background in electron mode
- Now compatible with SM predictions at 0.2 σ level
- Uncertainties statistically dominated

Recent LFU results not covered here ...

- LFU tests in semileptonic decays of light hadrons
 - See talk "Hyeron physics at BESIII" by Hong-Fei Sun)
- LFU tests with $B(W \rightarrow \ell \nu)$

CMS, PRD 105, 072008 (2022)

	CMS	LEP	ATLAS	LHCb	CDF	D0
$R_{\mu/e}$	1.009 ± 0.009	0.993 ± 0.019	1.003 ± 0.010	0.980 ± 0.012	0.991 ± 0.012	0.886 ± 0.121
$R_{\tau/e}$	0.994 ± 0.021	1.063 ± 0.027				
$R_{\tau/\mu}$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013			
$R_{\tau/\ell}$	1.002 ± 0.019	1.066 ± 0.025				

cLFV searches closely related to LFU

See the talk by Chen Wu after the coffee break

Summary & outlook

- LFU tests in a large range of decay channels have been performed recently by BESIII, BELLE(II), LHCb, etc.
 - Focused on beauty/charm sectors
- With improved precision or being first measurements, all results show good agreement with LFU
- R(D^(*)) results still show tension with SM, while R(K) now moves closer to SM expectation
- With new R(K^(*)) results, LF universal NP in C_{9l} now favored over LFU violation according to global fits [arXiv:2304.07330]
- Synergy of different experiments important to improve precision
- Still excitements ahead: LHC Run3 ongoing / more BELLEII data / BESIII taking $7x \psi(3770)$ data / STCF on the horizon / ...

Backup Slides

D tags @ BESIII PHYSICAL REV

PHYSICAL REVIEW LETTERS 121, 171803 (2018)

arXlv:2303.12468 3.19 fb⁻¹ @ 4178 MeV