

Recent Results from Daya Bay

Ming-chung Chu The Chinese University of Hong Kong, Hong Kong On behalf of the Daya Bay Collaboration

Partial support: CUHK VC Discretionary Fund, RGC CUHK3/CRF/10R The International Workshops on Weak Interactions and Neutrinos (WIN2023) July 3 – 8, 2019, Zhuhai, China

Recent results from Daya Bay

- The Daya Bay Reactor Neutrino Experiment
- Measuring neutrino mixing parameters
- Absolute reactor antineutrino flux, spectrum, and fuel evolution

The Daya Bay Reactor Neutrino Experiment

F. P. An et al., Daya Bay Collaboration, NIM A **811**, 133 (2016); PRD **95**, 072006 (2017).

Neutrino Oscillations

- Free particles: $E^2 = p^2 + m^2$ $\lambda \propto 1/p$
- 1 v_e with 1 E = mixture of 3 mass states \rightarrow 3 $p's \rightarrow$ 3 $\lambda's$
- Interference of 3 wavelength components \rightarrow beats = oscillation

Reactor expt.: a clean way to measure θ_{13}

 $\overline{\nu_{e}}$ detection ratio

Detector-related: 'identical' detectors, careful calibration

$$\sin^2\Delta_{ee} = \cos^2\theta_{12}\,\sin^2\Delta_{31} + \sin^2\theta_{12}\,\sin^2\Delta_{32}, \ \Delta_{ji} \equiv \Delta m^2_{ji}L/4E$$

Survival prob.

 $\rightarrow \sin^2(2\theta_{13})$

detector

efficiency

number

of protons

 $1/r^{2}$

Daya Bay Experiment

 Top five most powerful nuclear plants (17.4 GW_{th})
 → large number of v
_e (3x10²¹/s)
 Adjacent mountains shield cosmic rays

Daya Bay detectors

Daya Bay

Antineutrino detection

Operation history

3 Physics runs:
6-AD: 217 days (12/11 - 07/12)
8-AD: 1524 days (10/12 - 12/16)
7-AD: 1417 days (01/17 - 12/20)
~ 2700 days of data (good run list)

Statistics of nGd data:

Year	Calendar days	EH1	EH2	EH3	Total IBD's
$2018\;(\texttt{PRL}\;121,241805)$	1958	1,794,417	1,673,907	495,421	3,963,745
2022	3158	2,236,810	2,544,894	764,414	5,546,118

The Daya Bay Collaboration

About 200 members, 41 institutions from Chile, China, Czech Republic, Hong Kong, Russia, Taiwan, and USA

Prompt energy spectra

 $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 (\Delta m_{ee}^2 L/4E_v) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 (\Delta m_{21}^2 L/4E_v)$

Daya Bay Collaboration, PRL **130**, 161802 (2023).

Oscillation results

PRL 130, 161802 (2023).

- Oscillation parameters measured with rate + spectral distortion
- Both consistent with neutrino oscillation interpretation

Oscillation results

Daya Bay

Absolute reactor antineutrino flux, spectrum, and fuel evolution

F. P. An et al., Daya Bay Collaboration, PRL **116**, 061801 (2016);
Chinese Physics C **41**, 13002 (2017); PRL **118**, 251801 (2017); PRD **100**, 052004 (2019); PRL **128**, 081801 (2022); PRL **130**, 211801 (2023).

Reactor antineutrino flux

PRL 130, 211801 (2023); PRD 100, 052004 (2019); Chin. Phys. C 45, 073001 (2021).

- Precise measurement of reactor antineutrino flux using 3.5 M inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1958 days
- IBD yield = $(5.89\pm0.07)x 10^{-43} \text{ cm}^2/\text{fission}$, consistent with Summation method (SM2018), but rejects Huber-Mueller model (HM) prediction by 3.6 σ

Reactor antineutrino flux evolution

Effective fission fraction for *i*th isotope changes in time as fuel evolves:

PRL **130**, 211801 (2023); PRL **118**, 251801 (2017).

Reactor antineutrino flux evolution

Daya Bay

Extracted a generic observable reactor

antineutrino spectrum by removing the

Reactor antineutrino spectrum

PRD 100, 052004 (2019)

- 1958 days of data, 3.5M IBD events
- Measured prompt spectrum vs. Huber+Mueller:
- Global discrepancy at 5.3 σ

Reactor antineutrino spectrum evolution

PRL 130, 211801 (2023); PRL 118, 251801 (2017).

- Both SM2018 and HM have large disagreement with data particularly at ~ 3 MeV and 5 MeV \rightarrow 27 (25) σ
- Both SM2018 and HM show much better agreement with data for normalized evolution slope $(d\sigma/dF_9)/\overline{\sigma}$: 0.7 (1.8) σ

Summary

 σ_{235} [10⁻⁴³ cm² / fission]

Antineutrino energy [MeV]

Recent Results from Daya Bay

Ming-chung Chu The Chinese University of Hong Kong, Hong Kong On behalf of the Daya Bay Collaboration

Thank you!

Partial support: CUHK VC Discretionary Fund, RGC CUHK3/CRF/10R The International Workshops on Weak Interactions and Neutrinos (WIN2023) July 3 – 8, 2019, Zhuhai, China 21

backup

Neutrino Oscillations

- Each flavor state is a mixture of mass eigenstates
- Described by a neutrino mixing matrix

$$\begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = U \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix}$$

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{c^{p}}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{c^{p}}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$

The Maki-Nakagawa-Sakata-Pontecorvo Matrix

- A freely propagating v_e will oscillate into other types

 $P_{ee} = |\langle v_e(t) | v_e(0) \rangle|^2 \qquad \text{Survival probability for } v_e$ $= 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$ $\simeq 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} \qquad \text{for Daya Bay}$ $\sin^2 \Delta_{ee} = \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}, \ \Delta_{ii} \equiv \Delta m_{ii}^2 L/4E, \ \Delta m_{ii}^2 \equiv m_i^2 - m_i^2$

²³⁵U and ²³⁹Pu Spectra

Fuel evolution allows to extract ²³⁵U and ²³⁹Pu spectra

²³⁵U and ²³⁹Pu Spectra

