

An overview of the nEXO Experiment

Search for Neutrino-less Double Beta decay beyond 10²⁸ years

Yuduo Guan, IHEP On behalf of the nEXO collaboration WIN 2023, ZHUHAI

The 29th International Workshop on Weak Interactions and Neutrinos, ZHUHAI, CHINA, July2-8, 2023

Neutrino-less Double Beta Decay

The observation of $0\nu\beta\beta$ decay would imply new physics beyond Standard Model, providing evidence for

- Lepton number violation
- Neutrinos being Majorana fermions

It would also offer possible explanations of

- The origin of neutrino mass
- The observed matter-antimatter asymmetry

in the Universe

EXO-200 TPC

Liquid xenon time projection chamber searched for $0v\beta\beta$ in ¹³⁶Xe

- Used independent scintillation/ ionization measurement and full use of energy, position, topology to achieve 3D reconstruction for the expected MeV-scale energy deposits events
- Had effectiveness of self-shielding and low intrinsic background

The same principle will be used in nEXO

G. Anton et al. (EXO-200 Collaboration) Phys. Rev. Lett. 123, 161802 – Published 18 October 2019

EXO-200 results for $0v\beta\beta$

First 100 kg-class experiment to take data

- Excellent background control, successfully predicted by the extensive material characterization program <u>This is essential for nEXO design.</u>
- Scales linearly with exposure in two phases
- More papers on non- $\beta\beta$ decay physics

2012: Phys.Rev.Lett. 109 (2012) 032505 2014: Nature 510 (2014) 229-234 2018: Phys. Rev. Lett. 120, 072701 (2018) 2019: Phys. Rev. Lett. 123 (2019) 161802

Result

Phase I+II: 234.1 kg yr of ¹³⁶Xe exposure Limit: $T_{1/2}^{0\nu\beta\beta} > 3.5x10^{25}$ yr (90% CL) $\langle m_{\beta\beta} \rangle <$ (93 -286) meV

Sensitivity: 5.0x10²⁵ yr

Ton-scale Monolithic/Homogeneous TPC

Expand the $T_{1/2}^{0\nu\beta\beta}$ sensitivity to new physics by 2 orders of magnitude

- Proved technology in EXO-200
- Scalable, re-purifiable, transferable enriched liquid xenon (LXe)
- Low radioactivity in LXe and strong self-shielding
- Better energy resolution (<1%) at $Q_{0\nu\beta\beta}$ of 2.5 MeV
- Independent readout of scintillation/ ionization to achieve full 3D event reconstruction
- Powerful background rejection

LXe Mass (kg)	Diameter or length (cm)
5000	130
150	40
5	13

5 kg (~the size of Ge crystal) 150 kg (~the size EXO-200)

5000 kg (nEXO)

2.5 MeV γ attenuation length 8.7cm = -

Multi-parameter analysis

Multiple parameters of event are measured to robustly identify a $0\nu\beta\beta$ signal

Arranging the 3D bins into 1D, ordered by signal-to-background ratio, helps visualize the signal and background separation in nEXO

nEXO is an evolution from EXO-200, with specific R&D done over the last 10 years

	EXO-200:	nEXO:	Improvements:
Vessel and cryostat	Thin-walled commercial Cu w/HFE	Thin-walled electroformed Cu w/HFE	Lower background
High voltage	Max voltage: 25 kV (end-of-run)	Operating voltage: 50 kV	Full scale parts tested in LXe prior to installation to minimize risk
Cables	Cu clad polyimide (analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D identified 10x lower bkg substrate and demonstrated digital signal transmission
e ⁻ lifetime	3-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surface to volume ratio, detailed materials screening program
Charge collection	Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collection with tiles in LXe, detailed simulation developed
Light collection	APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated prototypes from two vendors
Energy resolution	1.2%	1.2% (req.), 0.8% (goal)	Improved resolution due to SiPMs (negligible readout noise in light channels)
Electronics	Conventional room temp.	In LXe ASIC- based design	Minimize readout noise for light and charge channels, nEXO prototypes demonstrated in R&D and follow from LAr TPC lineage
Background control	Measurement of all materials	Measurement of all materials	RBC program follows successful strategy demonstrated in EXO-200
Larger size	>2 atten. length at center	>7 atten. length at center	Exponential attenuation of external gammas and more fully contained Comptons

nEXO Pre-Conceptual Design Report - arXiv.org" arXiv:1805.11142 [physics.ins-det]

nEXO TPC design

- Monolithic TPC with 5 tons of 90% enriched ¹³⁶Xe
- Light detection module: 4.6 m² of SiPMs with ASIC readout in LXe
- Charge detection module: Anode plane of modular charge tiles with ASIC readout in LXe
- Electron lifetime: 10 ms
- Electric field: 400 V/cm

R&D-Charge detector

The design bases on full simulation of nEXO charge collection

- Anode consists by crossed metallic strips of 10 cm long and 3 mm pitch
- The X/Y traces cross at 60 µm wide bridges separated by a thin dielectric layer

Prototype tiles are produced and test in LXe to character their performance

M. Jewell et al. (nEXO Collab) "Characterization of an ionization readout tile for nEXO," JINST 13 P01006 (2018)

J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)

Z. Li et al. (nEXO Collab) "Simulation of charge readout with segmented tiles in nEXO," JINST 14 P09020 (2019) 10

10 cm

R&D-Photon detector

Photon Detector (PD) consists of vacuum ultraviolet(VUV) SiPMs

- 24 "staves" has 20 "tile modules" each
- Basic integrated element is "tile module" (96 cm²) has 16 ASIC readout channels and 96 SiPMs
- Total ~46,000 SiPMs (1cm x 1cm)

Performance of SiPMs

The SiPM devices from 2 vendors FBK(VUV-HD3) and Hamamastu (VUV4) meet the nEXO requirements

HPK VUV4 PDE vs overvoltage

J. C 82, 1125 (2022).

Interposer technologies

3 concurrent technologies explored in parallel

USA Brookhaven National Laboratory	CHINA IHEP-IME	CANADA Sherbrooke-TRIUMF-IZM
Fabricated by Tecdia (USA) Silica substrate, passive 2 layers (1 1), TQV	Fabricated by IHEP (China) Silicon substrate, passive 3 layers (1 2), TSV	Fabricated by IZM (Germany) Silicon substrates, passive Up to 10 layers (4 2 4), TSV

Background budget

"nEXO Pre-Conceptual Design Report - arXiv.org" arXiv:1805.11142 [physics.ins-det]

nEXO sensitivity and discover potential

nEXO will search $0\nu\beta\beta$ decay over a large, unexplored parameter space!

Assuming a 10 years livetime, nEXO is expected to reach

- Exclusion $T_{1/2}$ sensitivity of 1.35x10²⁸ yrs at 90% CL
- Discover $T_{1/2}$ sensitivity of $0.74 x 10^{28}$ yrs at 3σ significance

G Adhikari et al 2022 J. Phys. G: Nucl. Part. Phys. 49 015104 DOI 10.1088/1361-6471/ac3631

nEXO Majorana Mass Reach

nEXO completely explores the inverted mass ordering in almost all cases

- nEXO 90% C.L sensitivity to Majorana Neutrino Mass : $m_{\beta\beta} \approx 4.7 - 20.3 \ meV$
- nEXO 3σ discover sensitivity for the median NME model consider is 11.1meV

Summary

- nEXO is a 5 tons liquid xenon TPC detector to search the $0\nu\beta\beta$ decay process of ¹³⁶Xe.
- The projected sensitivity to half-life is 1.35×10²⁸ yrs at 90% CL, nearly 2 orders of magnitude improvement compared to current limits.
- Sensitivity to Majorana neutrino mass of 4.7-20.3 meV, covering the entire inverted neutrino mass ordering.

nEXO: A world wide collaboration neutrino-less experiment

Thanks