

# First Results from the LZ Dark Matter Experiment

#### **Dongqing Huang University of Michigan** On Behalf of LZ Collaboration



WIN2023, Zhuhai, China July 7th 2023 These projects are partially supported by US DOE



Dongqing Huang - University of Michigan

#### LZ (LUX-ZEPLIN) Collaboration,



https://lz.lbl.gov/

#### 37 Institutions; 250 scientists, engineers, and technical staff

Thanks to our

sponsors and

participating

institutions!

- **Black Hills State University**
- **Brookhaven National Laboratory**
- **Brown University**
- **Center for Underground Physics**
- **Edinburgh University**
- Fermi National Accelerator Lab.
- Imperial College London •
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- **Northwestern University**
- Pennsylvania State University
- **Royal Holloway University of London**
- **SLAC National Accelerator Lab.**
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- **Texas A&M University**
- **University of Albany, SUNY**
- **University of Alabama**
- **University of Bristol**
- University College London
- University of California Berkeley
- **University of California Davis**
- **University of California Los Angeles**
- **University of California Santa Barbara**
- University of Liverpool
- **University of Maryland**
- University of Massachusetts, Amherst
- **University of Michigan**
- University of Oxford
- **University of Rochester**
- **University of Sheffield**
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- US UK Portugal Korea **Australia**





LZ Collaboration Meeting University Of Maryland 5<sup>th</sup>-7<sup>th</sup> January 2023









FCT





Office of Science

U.S. Department of Energy

#### **Dark Matter**

Size

Tien-Tien Yu - Hot Topics on the Cosmic Frontier Colloquium, June 10



#### **Detection Techniques of Dark Matter**



# **LZ Experiment**



Dongqing Huang - University of Michigan

#### **LZ Detector Overview**



#### Three segmented detectors (details will be discussed later)



#### **Dual Phase Xenon TPC**



#### **Dual Phase Xenon TPC**



• Charge (S2) / light (S1) ratio => Signal vs Background discrimination



- Electrons and gammas interact • with atomic electrons, produce electronic recoils (ER)
- WIMPs (and neutrons) interact with Xe nuclei, produce nuclear recoils (NR) 8

#### **LZ TPC Design Notes**

• I.5 m diameter x I.5 m height

NIM A, 163047 (2019)

- 7T active LXe (5.6T fiducial)
- PTFE everywhere for light collection
- 494x 3" PMTs
- 4 grids (bottom, cathode, gate, anode) plus field cage define TPC





#### **The LZ Vetoes**

#### • WIMPs will only scatter once (10 million light years of lead...)

Backgrounds can and will scatter multiple times - can be vetoed!

#### The Skin

- 2 tonnes of LXe
   surrounding the TPC
- 1" and 2" PMTs at top and bottom of the skin region
- Lined with PTFE to maximize light collection
- Anti-coincidence detector for γ-rays



#### **The Outer Detector (OD)**

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Anti-coincidence detector for γ-rays and neutrons
- Observe ~8 MeV of γ-rays from thermal neutron capture

- Neutrons particularly important
- Characterize BGs in situ

Veto enables discovery potential
 10

Dongqing Huang - University of Michigan

#### BG Mitigation - Material Screening

- Every detector component down to solder and welding tips are screened for their radiopurity to ensure they all meet LZ background control requirements.
- Contamination in Detector Components
  - < 10% irreducible / physics backgrounds (<sup>136</sup>Xe double beta decay, solar neutrinos) in 5.6 tonne fiducial volume
- Techniques:
  - Gamma ray spectroscope with ultralow-background HPGe
  - NAA (Neutron activation analysis)
  - ICP-MS (inductively coupled mass spectroscopy)
  - Alpha spectroscopy (for surface contamination)
  - Silicon PIN (Rn emanation)
- Main facilities housing 13 HPGe:
  - Black Hills Underground Campus (BHUC)
  - Boulby Underground Germanium Suite (BUGS)
  - LBNL
  - Alabama



Image shows PMT raw materials are screened by HPGe detectors before they are used for PMT manufacturing



#### **Internal BG Mitigation**

- Inline Radon Removal System (iRRS)

## Built by University of Michigan



## **Detector Assembly (The Picture Round)**

- Detector assembly began in earnest in fall, 2018 on surface at SURF
  - 13,500 working hours in the low radon clean room with tens of thousands of ultra-clean, low background components
- TPC brought underground in October 2019
- Cryostat closed in March 2020, ahead of COVID-19 shutdowns
- OD complete and filled by July 2021
- Xenon offsite purification complete Aug. 2021 TPC Filled in Sept. 2021! Cold gas, March 2021



#### **PMT** arrays and cabling



### **Closing Up**



#### **The Outer Detector**

**Construction leb by the** University of Michigan

![](_page_15_Picture_2.jpeg)

![](_page_16_Picture_0.jpeg)

## LZ's Science Run 1 (SR1)

- Initial plan for Science Run 1 to collect 60 live days
  - Prove successful detector operation and expectation for competitive sensitivity to existing results
- Data taken from Dec. 23 (2021) to May 12 2022, with a break for calibrations in middle and at end

![](_page_17_Figure_4.jpeg)

Christmas and New Years

Easter

July 4

#### **Data Analysis**

![](_page_18_Picture_1.jpeg)

Courtesy Alissa Monte. You can get this on a t-shirt, along with other LZ-related gear at our <u>store</u> (https://alissas-store-3.creator-spring.com/)

#### Anatomy of an event

• Cartoon waveform:

![](_page_19_Figure_2.jpeg)

#### **Calibrations**

- We use the Noble Element Simulation Technique (NEST)\* to model LXe response
- At right:
  - Blue pts:  $CH_3T$  data
  - Orange pts: DD (neutron) data
- Fit data to model for detector-performance parameters

| Parameter                      | Value                        |
|--------------------------------|------------------------------|
| $g_1^{\mathrm{gas}}$           | 0.0921 phd/photon            |
| $g_1$                          | 0.1136 phd/photon            |
| Effective gas extraction field | $8.42\mathrm{kV/cm}$         |
| Single electron                | $58.5\mathrm{phd}$           |
| <b>Extraction Efficiency</b>   | 80.5%                        |
| $g_2$                          | $47.07\mathrm{phd/electron}$ |

• In SR1, we have 99.9% rejection of ER leakage below the median quantile of a 40 GeV WIMP.

![](_page_20_Figure_8.jpeg)

21

#### **Data Quality - Livetime cuts**

- The detector is not continuously in a stable state capable of search for low-energy, rare signals. Identifying (and removing) periods of heightened detector activity is a vital component to data selection.
- Removal of e/ph trains represents the largest single hit to our livetime, removing nearly 30%. Optimizations are possible.

| Livetime (LT) impact cuts |                                            |                                                                                                              |  |  |
|---------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Cut name                  | Targeted effect                            | Impact                                                                                                       |  |  |
| Hot spot exclusions       | Grid electron emission                     | 3.1% LT removed                                                                                              |  |  |
| Muon holdoff              | Glow from TPC-crossing muons               | 0.2% LT removed                                                                                              |  |  |
| E/ph-train holdoff        | Glow from S2s                              | 29.8% LT removed                                                                                             |  |  |
| High S1 rate exclusions   | PMT/HV(?) misbehavior                      | 0.2% LT removed                                                                                              |  |  |
| Bad buffer cuts           | DAQ issue, caused by glow from muons & S2s | Deadtime hit, 0.5% LT removed,<br>confirmed with GPS triggers and<br>simple calculation from S2/muon<br>rate |  |  |
| Excess Area cut           | Glow from ghost muons/S2s                  |                                                                                                              |  |  |
| Sustained rate cut        | Glow from ghost muons/S2s                  |                                                                                                              |  |  |
| Burst noise cut           | Electronics noise                          | Deadtime hit, < 0.001% LT removed                                                                            |  |  |

## Signal acceptance

- S2 trigger acceptance measured by
  - Use of random triggers
  - DD data, using pulsed plasma trigger
- SI acceptance dominated by 3-fold coincidence requirement
- Cut acceptance measured from calibration sources.
- Event classification efficiency measured by visual inspection of O(1000) neutron-calibration events
- SRI measured:

#### 50% acceptance above 5.3 keVnr

 Uncertainty band (gray) from differences in cut acceptances as measured with different calibrations, and statistical uncertainties.

![](_page_22_Figure_10.jpeg)

#### **Backgrounds**

There are many sources of background in our experiment, though not all contribute the same. Listed here are the major contributors to the WIMP-search

- Dissolved beta emitters:
  - O <sup>214</sup>Pb (<sup>222</sup>Rn daughter), <sup>212</sup>Pb (<sup>220</sup>Rn daughter), <sup>85</sup>Kr, <sup>136</sup>Xe (2 beta)
- Dissolved e-captures (monenergetic x-ray/Auger cascades):
  - <sup>127</sup>Xe, <sup>124</sup>Xe (2 e-capture), <sup>37</sup>Ar
- Long-lived gamma emitters in detector materials:
  - $\circ$  <sup>238</sup>U chain, <sup>232</sup>Th chain, <sup>40</sup>K, <sup>60</sup>Co
- Neutron emission from spontaneous fission and  $(\alpha, n)$ 
  - NR
- Solar neutrinos
  - <sup>8</sup>B (NR), pp (ER)
- Accidental coincidences.

#### **Rn-chain backgrounds**

- Alphas from <sup>222</sup>Rn chain easily identified by S1 spectrum.
- <sup>214</sup>Pb is the main source of background in the WIMP search; rate must be ≤ rate of <sup>222</sup>Rn decays.
- Likewise, rate of alphas from <sup>214</sup>Po must be ≤ rate of <sup>214</sup>Pb

![](_page_24_Figure_4.jpeg)

| Rn222 (µBq/kg)     | Pb214 (µBq/kg)                   | Po214 (µBq/kg)     |
|--------------------|----------------------------------|--------------------|
| 4.37 ± 0.31 (stat) | 3.26 ± 0.13(stat)<br>± 0.57(sys) | 2.56 ± 0.21 (stat) |

![](_page_24_Figure_6.jpeg)

Dongqing Huang - University of Michigan

![](_page_25_Picture_0.jpeg)

- Electron capture, t<sub>1/2</sub> = 35 d, monoenergetic 2.8 keV ER deposition
- Occurs naturally in atmosphere via e.g.
   <sup>40</sup>Ca(n,α)<sup>37</sup>Ar (\*)
  - Equilibrium values can range from I-100 mBq/m<sup>3</sup>
- Also produced by cosmic spallation of natural xenon
- We expect ~100 decays of <sup>37</sup>Ar in SR1(\*\*) with a large uncertainty.

![](_page_25_Figure_6.jpeg)

(\*) R.A. Riedmann, R. Purtschert, Environ. Sci. Technol. (2011) 45(20), 8656-8664 (\*\*) LZ Collaboration, Phys. Rev. D 105, 082004 (2022), <u>2201.02858</u>

#### **Accidentals Background**

![](_page_26_Figure_1.jpeg)

### **Outer Detector Neutron Tagging**

- Neutron backgrounds ("Det. NR") with OD tag are 7.75 times larger than without (because the tagging efficiency is 88.5%).
  - 5% of non-neutron backgrounds have accidental OD tag
- We use OD-tagged data to find a datadriven constraint on the rate of Det. NR
- Result: Number of Det. NR in SRI WIMP search is <0.2 events (2-sided constraint).
  - Consistent with simulation-derived estimate of 0.06 events in 60 live days.

![](_page_27_Figure_6.jpeg)

Above: each data point is a pie chart showing the post-fit likelihood contribution of each component in the fit.

#### SR1 Data

- SI threshold: 3 phd
- S2 threshold: 600 phd
- Gray bands are combined ER background sources
- Dashed-purple curves indicate Iand 2-sigma contours of a 40 GeV WIMP

 $\circ$   $\,$  Red curves - flat NR spectrum

- Green band: <sup>8</sup>B CEvNS
- Orange curves: contours for Ar-37
- 335 events observed
- 276 ± 36 events expected, not including <sup>37</sup>Ar.
- We bound the <sup>37</sup>Ar with a uniform constraint between **0 and 291** events
- 60.3 ± 1.2 live days
- 5.5 ± 0.2 tonnes

![](_page_28_Figure_13.jpeg)

## **SR1 WIMP-search**

- Curves:
  - $\circ$  Solid black: observed limit
  - Dashed-black: median expected sensitivity
  - Gary dot-dash: limit before applying the power constraint\*\*
- No evidence of WIMPs at any mass
- Minimum exclusion on WIMP-nucleon cross section (SI) of 9.2x10<sup>-48</sup> cm<sup>2</sup> at 36 GeV

![](_page_29_Figure_7.jpeg)

\*\* the limit is constrained to cross section such that the power of the alternative hypothesis is 0.16 [G. Cowan, etc.]

https://doi.org/10.48550/arXiv.2207.03764

30

(paper recently accepted by PRL)

Dongqing Huang - University of Michigan

#### Summary & Outlooks

- LZ detectors are performing well and backgrounds are within expectations.
- With its first science run, LZ has achieved world-leading WIMP sensitivity, and been demonstrated to be the most sensitive dark matter detector ever built.
- LZ plans to take 1000 live days of data (x17 more exposure)
- Broad physics programs ahead of LZ
  - Effective field theory couplings for dark matter
  - $\circ$   $\,$  Solar axion, ALPs, neutrino magnetic moment  $\,$
  - Low-mass WIMP searches
  - Solar 8B CEvNS searches
  - $\circ$   $\,$  Neutrinoless double beta decay
  - <u>And more</u>!

31

# **Thanks for Your Attention**

![](_page_32_Picture_0.jpeg)

#### **Data Quality**

- All single-scatter data
- No cuts of any kind
- Are there WIMPs in there?

![](_page_33_Figure_4.jpeg)

#### **Data Quality**

- All single-scatter data
- Only fiducial-volume cuts applied here.
- Fiducial mass: 5.5 ± 0.2 tonnes
- Still quite difficult to look for WIMPs.

![](_page_34_Figure_5.jpeg)

### **Data-quality cuts**

- Spurious signals contaminate the data
- Two categories of cuts target data quality
  - a. Pulse-based cuts:
    - Cuts events based on SI and S2 shape, hit patterns.
    - Impacts signal acceptance, measured with calibration data sets.
  - b. Time-period cuts:
    - Cuts time periods based on detector behavior.
    - Impacts cumulative livetime.

![](_page_35_Figure_9.jpeg)

### Data Quality - pulse trains

- Large S2 pulses induce "trains" of pulses that last much longer than the event window (100s of ms)
- Elevated rates can contribute to accidental-coincidence backgrounds
- [rare] muons produce a similar effect, but on a much longer timescale (10s of s)

![](_page_36_Figure_4.jpeg)

37

#### **Data Quality - pulse trains**

- The rate of single photons and single electrons in a train depends on the size of the progenitor S2 pulse.
- We veto live time (gray bands) following large S2s (red dots)

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_4.jpeg)

#### Dongqing Huang - University of Michigan

### **Final SR1 Data**

- Projecting onto electronic-equivalent reconstructed energy ("keVee")
- Data histogram shown as black points
- Best fit with *no* WIMP signal yields p-value of 0.96
- Expected range of statistical fluctuations for best-fit: light-blue boxes

| Source                                       | Expected Events | Best Fit             |
|----------------------------------------------|-----------------|----------------------|
| $\beta$ decays + det ER                      | $218\pm36$      | $222\pm16$           |
| $ u  { m ER}$                                | $27.3\pm1.6$    | $27.3\pm1.6$         |
| $^{127}$ Xe                                  | $9.2\pm0.8$     | $9.3\pm0.8$          |
| $^{124}$ Xe                                  | $5.0 \pm 1.4$   | $5.2 \pm 1.4$        |
| $^{136}$ Xe                                  | $15.2\pm2.4$    | $15.3\pm2.4$         |
| ${}^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$ | $0.15\pm0.01$   | $0.15\pm0.01$        |
| Accidentals                                  | $1.2\pm0.3$     | $1.2\pm0.3$          |
| Subtotal                                     | $276\pm36$      | $281\pm16$           |
| $^{37}\mathrm{Ar}$                           | [0,  291]       | $52.1^{+9.6}_{-8.9}$ |
| Detector neutrons                            | $0.0^{+0.2}$    | $0.0^{+0.2}$         |
| $30{ m GeV/c^2}~{ m WIMP}$                   | —               | $0.0^{+0.6}$         |
| Total                                        | -               | $333 \pm 17$         |
|                                              |                 |                      |

![](_page_38_Figure_6.jpeg)

#### **SR1 Data**

- Black points: events passing all cuts.
- Gray points: events passing all cuts except for fiducial volume.
- Red x: events failing LXe skin veto cut (mostly <sup>127</sup>Xe)
- Blue circle: events failing OD tag veto.

![](_page_39_Figure_5.jpeg)

## **Background-only expectation of data**

![](_page_40_Figure_1.jpeg)