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Dark Matter

Tien-Tien Yu - Hot Topics on the Cosmic Frontier
Colloquium, June 10

Size

- COSMIC MICROWAVE BACKGROUND

LARGE SCALE STRUCTURE

Gravitational
interactions
GALAXY MERGERS

GALACTIC ROTATION CURVES

Dark Energy
68%

Visible Matter-
5% Dark Matter
Gt 27%

* There is strong consensus regarding
how much stuff there is in the universe

"15% , Dark Matter is 85% of mass
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Detection Techniques of Dark Matter
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https://www.theverge.com/2016/4/25/11501078/cern-300-tb-lhc-data-open-access
https://fermi.gsfc.nasa.gov/
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LZ Detector Overview

Three segmented detectors
(details will be discussed later)

Cabling & Thermosyphon
Conduits
Water
Tank
Tyvek
Reflector
Acrylic Tanks
Outer Detector Containing GdLS
PMTs
D-D Neutron
Cryostat Tube
Vessels
Cathode HV
Feedthrough
Human
TPC7T
Active LXe

Cabling & Xe

Circ. Conduits : 4'-

Xenon ‘skin’

instrumented region outside of the 6
main TPC
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Dual Phase Xenon TPG

* Excellent 3D imaging capability
+ Z position from S| - S2
s timing
2 4 XY positions from S2 light
pattern

. | * Xenon is easily purified
Outgoing [IITEHNS Y P

Particle indicates depth ° . |
R | Xenon is DENSE!

LS

—
Incoming
Particle

Background rate
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Dual Phase Xenon TPG

Incoming
Particle

Dongqging Huang - University of Michigan

* Charge (S2) / light (S1) ratio
=> Signal vs Background discrimination

Electronic
Recoil
Outgoing
Particle
o
‘ Nuclear
Recoil

+ Electrons and gammas interact
with atomic electrons, produce
electronic recoils (ER)

+ WIMPs (and neutrons) interact
with Xe nuclei, produce nuclear

recoils (NR) g



LZ TPGC Design Notes

® |5 m diameter x 1.5 m height NIM A, 163047 (2019)

o 7T active LXe (56T fldUCla.I) VT arra GAS PHASE AND
' yELECTROLUMlNESCENCE REGION

® PTFE everywhere for light collection

e

® 494x 3” PMTs

LXe surface

® 4 grids (bottom, cathode, s

gate, anode) plus field cage

define TPC

Skin PMT

HV CONNECTION TO CATHODE

TPC field cage

‘Q Cathode grid

Reverse-field region
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Bottom PMT array

Side Skin PMTs 9
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https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.nima.2019.163047&v=edb7d640

The LZ Vetoes

* WIMPs will only scatter once (10 million light years of lead...)
+ Backgrounds can and will scatter multiple times - can be vetoed!

The Skin The Outer Detector (OD)

e 2 tonnes of LXe e 17 tonnes Gd-loaded liquid
scintillator in acrylic vessels
e 120 8” PMTs mounted in

the water tank

surrounding the TPC
e 1” and2” PMTs at top and
bottom of the skin region
e Lined with PTFE to
maximize light collection

e Anti-coincidence detector
for y-rays and neutrons
® Observe ~8 MeV of y-rays

® Anti-coincidence detector
from thermal neutron

for y-rays
y-ray capture

e Neutrons particularly important

e Characterize BGs in situ
Dongqging Huang - University of Michigan

— Veto enables discovery potential 10



- Material Screening

e Every detector component down to solder and welding tips are screened for their radiopurity to
ensure they all meet LZ background control requirements.
e Contamination in Detector Components
o <10% irreducible / physics backgrounds (**Xe double beta decay, solar neutrinos) in 5.6
tonne fiducial volume
e Techniques:
Gamma ray spectroscope with ultralow-background HPGe
NAA (Neutron activation analysis)
ICP-MS (inductively coupled mass spectroscopy)
Alpha spectroscopy (for surface contamination)
o  Silicon PIN (Rn emanation)

O
O
O
O

e Main facilities housing 13 HPGe: Image shows PMT raw materials are
o  Black Hills Underground Campus (BHUC) screened by HPGe detectors before
o  Boulby Underground Germanium Suite (BUGS) they are used for PMT manufacturing
o LBNL
o  Alabama

The European Physical Journal C, Volume 80, Article number: 1044 4
(2020) (arXiv:2006:02506) Chaloner

Dongqging Huang - University of Michigan 1



Internal BG Mitigation
- Inline Radon Removal System (iRRS)

Built by University of

Michigan
e 222Rnis a product of 2%2U decay
o Decay lifetime: 5.516 days Charcoal
e “°Rn are constantly emanated | Radon [ findlon Remoualiiine
from detector components Reduction @
: L Kl System PMT Cable *
e [t dissolves in liquid xenon I Breakout Box

e

o Cannot be removed by hot oo o BreakoutBox == .
i E WATER TANK i
purifying getters 5 % :

e (-decay of daughter "Pb mimics Xe VAPOR

WIMP signals 1
O potentially leaks into WIMP Kenon Tower : DETECTOR LIQUID
edion P : XENON VOLUME
t
g Piapne

]

High Voltagei
Feed Thru |

1

e Reduce ?%2°Rn background of
warm sections (cables and
feedthroughs) by at least one

order of magnitude with iRRS ~ Lememmmmmmimonl | . N /

___________________________________________________________
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Detector Assembly (The Picture Round)

® Detector assembly began in earnest in fall, 2018 on surface at SURF

4+ 13,500 working hours in the low radon clean room with tens of thousands of ultra-clean,
low background components

TPC brought underground in October 2019

Cryostat closed in March 2020, ahead of COVID-19 shutdowns
* OD complete and filled by July 2021

* Xenon offsite purification complete Aug. 2021 - TPC Filled in Sept. 202!
Cold gas, March 2021
TPC Complete, 4\\

PMT arrays arrive
Dec 2018, Jan 2019

il Xe Fill
Kr Operation  Aug-Sep
Jan-Aug 2021 2021

CD3 and TDR,
March 2017

Science
Running!

Oct 2019 Electronics
Fall 2020

Circ Test

July 2020
2017 2021 2022
Sealed Up .
OD Construction
;’;}I’voes:at Winter 2020-2021 oD Fill Comm|55|on|ng
’ une 2021
Yoy 2018 J Fall 2021
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PMT arrays and cabling
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| 1.6 miles of (low
background, dust
free!) cabling

| 4
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Lowemnne&cryostat vessel

inté outer Cr' ostat vessel <-4 TR Making up cathode connections
—= A (under N2 purge)

|5
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The outer Detector Construction leb by the

University of Michigan
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LZ's Science Run 1 (SR1)

e |nitial plan for Science Run 1to collect 60 live days

o Prove successful detector operation and expectation for competitive sensitivity to
existing results

e Data taken from Dec. 23 (2021) to May 12 2022, with a break for calibrations in middle and
at end

SR Begins, Pause for End of SR Calibration campaign
Dec.23.2021 calibrations WIMP search  , .19 May || July 7,2022
o Jan 17-Jan 26 April 18 P / First Results!

Christmas and
New Years

Easter July 4
|18
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LET’S LOOK AT
SOME WAVEFORMS

N \%/

Courtesy Alissa Monte.You can get this on a t-shirt, along with other LZ-related gear at our store
(https://alissas-store-3.creator-spring.com/)

Dongqging Huang - University of Michigan
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Anatomy of an event

e Cartoon waveform:

S1 52

,
£
=
L
(=
O

e Actual waveform:

) ) A
TpcHighGain Outgoing
5.0e+0 . )
; Run 7253, Event 85858 Particle
- i e 1 ® S1 @ S2 @ SE | . ]
S ] Incoming
3 4 :
§ 3.0e0 7] S2 Particle
§ . \
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1.0e+0 / JL
0.0e+0 -} l o . é o "
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-400.00 -200.00 0.00 200.00
time [us]
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Calibrations

We use the Noble Element

Simulation Technique (NEST)* to
model LXe response

At right:
O Blue pts: CH,T data
o Orange pts: DD (neutron) data

Fit data to model for
detector-performance parameters

Parameter Value

gas

g1

g1
Effective gas extraction field

0.0921 phd/photon
0.1136 phd /photon
8.42kV /cm

58.5 phd
80.5%
47.07 phd/electron

Single electron
Extraction Efficiency

g2

e In SRI, we have 99.9% rejection of

ER leakage below the median
quantile of a 40 GeV WIMP.

Dongqging Huang - University of Michigan
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Data Quality - Livetime cuts

® The detector is not continuously in a stable state capable of search for low-energy, rare

signals. ldentifying (and removing) periods of heightened detector activity is a vital
component to data selection.

e Removal of e/ph trains represents the largest single hit to our livetime, removing nearly
30%. Optimizations are possible.

Livetime (LT) impact cuts

Cut name Targeted effect Impact
Hot spot exclusions Grid electron emission 3.1% LT removed
Muon holdoff Glow from TPC-crossing muons 0.2% LT removed
E/ph-train holdoff Glow from S2s 29.8% LT removed
High S1 rate exclusions PMT/HV(?) misbehavior 0.2% LT removed
Bad buffer cuts DAQ issue, caused by glow from muons & S2s Deadtime hit, 0.5% LT removed,
confirmed with GPS triggers and
Excess Area cut Glow from ghost muons/S2s simple calculation from S2/muon
Sustained rate cut Glow from ghost muons/S2s e
Burst noise cut Electronics noise Deadtime hit, < 0.001% LT removed

Dongqging Huang - University of Michigan



e 52 trigger acceptance measured by

|

o Use of random triggers 1.0

o DD data, using pulsed plasma
Trigger

——— + S1 threshold
— + SS & data analysis cuts

0.8

trigger

® S| acceptance dominated by 3-fold

[ T | T T T | T T T I

5'06 + ROI
coincidence requirement 5 ol e
S
e Cut acceptance measured from 0 041 || 075

calibration sources. 0.50

| | 1 I 1 | 1 l | | l I 1 1 | I | | 1

| 50% efficiency: 7
L ) o 02| 0.5 | 53keVy, E
e Event classification efficiency measured ™ | | :
. ° ° 0-00 1 1 1 1 1 | 1 i 1 lll I | 1 1 i | 1 L
by visual inspection of O(1000) 0o 0 2 4 6 8 10
1 1 ) 1 | | 1 I 1 1 | | I 1 1 1 | I 1 1 | | I 1 | | | l | | | | I | | | |
neutron-calibration events ] 0 5 3 0 & = -
o SR I measured: Recoil Energy [keVm-]

50% acceptance above 5.3 keVnr

o Uncertainty band (gray) from differences in cut acceptances as
measured with different calibrations, and statistical uncertainties.
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Backgrounds

There are many sources of background in our experiment, though not all
contribute the same. Listed here are the major contributors to the WIMP-search

e Dissolved beta emitters:
o 2'*Pb (*22Rn daughter), ?'?Pb (*°Rn daughter), *Kr, '**Xe (2 beta)
® Dissolved e-captures (monenergetic x-ray/Auger cascades):
o '?Xe, ?*Xe (2 e-capture), *’Ar
® Long-lived gamma emitters in detector materials:
o 23U chain, 2*Th chain, *K, ®°Co
e Neutron emission from spontaneous fission and (a,n)
o NR
® Solar neutrinos
o °B (NR), pp (ER)

® Accidental coincidences.

Dongqing Huang - University of Michigan
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Rn-chain backgrounds

e Alphas from ?*2Rn chain easily identified

by S| spectrum.

e 2*Pb is the main source of background in
the WIMP search; rate must be < rate of
22Rn decays.

e Likewise, rate of alphas from 2'*Po must

be < rate of 2/“Pb

Rn-222
(3.82 d)

a
(5.6 ?ieV)

Po-218
(3.1 m)

Po-214

-1 (164 us)

a
(7.8 %V)

Po-210

- | (138 day)

Bi-210
(5 day)

Pb-210
(22.3y)

Dongqging Huang - University of Michigan

a
(5.4 ?leV)

+Data [JModel

10° g
= e 1125 e Kr85 e Pp212  -e-- Pb214
105 =~ SolarER - Xe125 - Xel27 -~ Xe129m
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o 108
1 .
in P e
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Reconstructed Energy [keVee]

50 100 150 200 250 300 350 400

450 500

Rn222 (uBqg/kg) Pb214 (uBqg/kg) Po214 (uBg/kg)

4.37£0.31(stat) ', ¢ 57(sys)

3.26 * 0.13(stat) 256+ 0.21

(stat)

Pb-206

(stable)
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37 Ar

5.0
214Pb
450 /////
e Electron capture,t,, = 35 d, = ///
/2 5 40[ -
monoenergetic 2.8 keV ER deposition ¢ >
< 351 .
® Occurs naturally in atmosphere via e.g. o | B 40Gev/c SLWIMP
40 37 = 30 plots from (**)
Ca(n,a)’’Ar (%) ¥ . cene
o Equilibrium values can range from >0 10 20 30 40 50 60 70 80
|-100 mBg/m’ Sl [phd]
e Also produced by cosmic spallation of e e
natural xenon 10 "¢ T
e We expect ~100 decays of *’Ar in S 102]
. . =
SR (**) with a large uncertainty. -
> 10°F
% . - - .: .: .
<sE » . Individual batch
5 10 F . — Average activity, 100% removal =
. == Average activity, 0% removal -
-5 | T : 1 . : ¥ - . 1 1 1 oot
| o 0" "0 200 100 0 100 200 300
(*) R.A. Riedmann, R. Purtschert, Environ. Sci.Technol. (201 1) 45(20), 8656-8664 . . .
(*) LZ Collaboration, Phys. Rev. D 105,082004 (2022), 2201.02858 Time since last delivery [day] %6
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https://arxiv.org/abs/2201.02858

Accidentals Background

® Isolated S| pulses occur at O(l Hz) Slk

Slk Slk Slk Slk

52 52 52
e Isolated S2 pulses occur at O(10~ Hz) / \ / \ _/L

(above threshold)

<

o«
&‘&“
\Nz;"

® Occasionally, a lone S| will accidentally come
within Ims of an unrelated, lone S2, and will
look like a valid single scatter in the TPC.

e Events with measured drift > Ims are caused
by accidental coincidences and are used to
constrain our rate of this background.

Slk

Physical drift region

_//E

Unphysical drift region

e Estimated number of accidentals in SR is
1.2 £ 0.3 events

Dongqging Huang - University of Michigan

Slk
0

_/E

Measured drift time [ms]
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Outer Detector Neutron Tagging

n n .
e Neutron backgrounds ("Det. NR") with OD . ocrwnr W P O i 0 SDes N
tag are /.75 times larger than without W Solar ER Det NR M "X

. . ® . 50— T T 1 LI B — LI — LI B LI I — LI —— LI B
(because the tagging efficiency is 88.5%). : | ' ' ' | |
I SR data passing all cuts, except OD veto
o0 5% of non-neutron backgrounds have sk 5
accidental OD tag Z .
= e °
. o i
® We use OD-tagged data to find a data- < 40k . * . - ‘ :
. . '_' K 0% o "'
driven constraint on the rate of Det. NR %" - oaseie - o
e i ¢ e
e Result: Number of Det. NR in SRI 3.5 e :
WIMP search is <0.2 events (2-sided l _
constraint). 3.0- _
o Consistent with simulation-derived | | | | | | |
estimate of 0.06 events in 60 live days. 0 10 20 30 40 50 60 70 80

S1. [phd]

Above: each data point is a pie chart showing the post-fit
likelihood contribution of each component in the fit.
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SR1 Data

S| threshold: 3 phd
S2 threshold: 600 phd

Gray bands are combined ER
background sources

Dashed-purple curves indicate |-
and 2-sigma contours of a 40 GeV

WIMP
o0 Red curves - flat NR spectrum
Green band: B CEVNS

Orange curves: contours for Ar-37

|llll||lll|llll|llll

335 events observed

P R

276 * 36 events expected, not
including *’Ar.
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0.9 keV e

SkéVi

2.9 keV .

15 keV

7.4 keVe

35 keV;

4
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..

We bound the 3’Ar with a uniform 2.75
constraint between 0 and 291

events

60.3 £ 1.2 live days
5.5 + 0.2 tonnes

0
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10 20 30 40 50 60 70
S1c [phd]
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SR1 WIMP-search

o Curves: w

o Solid black: observed limit

IANL LN T

o0 Dashed-black: median
expected sensitivity

o Gary dot-dash: limit before
applying the power
constraint**

| lIllIIII

e No evidence of WIMPs at any
mass

T IIIIIIII
| IIlllIlI

-
~ -
. —-

WIMP-nucleon og; [em?]

® Minimum exclusion on

WIMP-nucleon cross section
(SI) of 9.2x10* cm? at 36 GeV

I I lIIIIIl
r
\‘

| 1 IlIIIII

10_48 I | | lllllll | | llIIlII | | L1 1 1 1

10" 10> 10° 10

WIMP Mass [GeV/c?]

**the limit is constrained to cross section such that the power

of the alternative hypothesis is 0.16 [G. Cowan, etc.] 30

https://doi.org/10.48550/arXiv.2207.03764
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https://doi.org/10.48550/arXiv.2207.03764

Summary & Outlooks

e |/ detectors are performing well and backgrounds are within
expectations.

e With its first science run, LZ has achieved world-leading WIMP
sensitivity, and been demonstrated to be the most sensitive dark
matter detector ever built.

e |LZ plans to take 1000 live days of data (x17 more exposure)

e Broad physics programs ahead of LZ

Effective field theory couplings for dark matter
Solar axion, ALPs, neutrino magnetic moment
Low-mass WIMP searches

Solar 8B CEVNS searches

Neutrinoless double beta decay

And more!

O O O O O O

31
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https://doi.org/10.48550/arXiv.2207.03764
https://iopscience.iop.org/article/10.1088/1361-6471/ac841a

Thanks for Your Attention

Dongqing Huang - University of Michigan
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Data Quality

e All single-scatter data 41
e No cuts of any kind 4.5
® Are there WIMPs in there!?

400

o)

=

= 3.75

QO

(@\|

N

= 3.50

o))

L=

5
)
W

3.00

2.75
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Data Quality

|
1
|
\
\
I
|
|
\
\
\
\
|
\

.........._.ﬂ__—_______._____

I1'|I

e All single-scatter data

e Only fiducial-volume cuts

applied here.

=
=
4

([pyd] 0ZS)0130]

5.5 £ 0.2 tonnes
e Still quite difficult to look for

® Fiducial mass

v
~

o

WIMPs.

S
w

o

V@)
@\

N

() (Vo)
< ™
onN (@\

80

70

60

50

S1c [phd]
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Data-quality cuts

® Spurious signals contaminate the data
e Two categories of cuts target data quality

a. Pulse-based cuts:

m Cuts events based on S| and S2 shape, hit
patterns.

m Impacts signal acceptance, measured with
calibration data sets.

log19(S2c [phd])

b. Time-period cuts:

m Cuts time periods based on detector
behavior.

m Impacts cumulative livetime.

S1c [phd]

36
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Data Quality - pulse trains

e Llarge S2 pulses induce "trains" of pulses that last much longer than the event window
(100s of ms)

e Elevated rates can contribute to accidental-coincidence backgrounds

® [rare] muons produce a similar effect, but on a much longer timescale (10s of s)

E-trains (electron trains)

“Progenitor” S2 - E- attachment and release on
impurities to impurities

§ SEs E- delayed extraction
2 e
E \\\
- A A A A
— |
Time
ph-trains (photon trains)
o “Progenitor” S2
T 4 - Currently thought to be due to
= fluorescence
Q.
S
<

— >

Time 37
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Data Quality - pulse trains

g 310
® The rate of single photons and i o | 1 f
. . . 10 3 o © 7]
single electrons in a train depends ; e | °
. . - [ ]
on the size of the progenitor S2 ok Ji0' g
pulse. 2 ] =
St 1 @
. . D) 104:— - S
® We veto live time (gray bands) N =
following large S2s (red dots) A ol 104§
10°
1 P (I BRI R T S T T B P I T 3
1041 42 43 44 45 16"
Time [s]
TpcHighGain $ RiepPIZ1 "\{}H B 8 8:
2.5e-1 3 Run 6973, Event 3010
—_ 2.0e_1_f ® S1 @ S2 @ SE ® MPE SPE @ Other
0.0e+0—§ i | L | ‘ J i ' ‘L“N& bl
_ . _ . .time[ps] - | 38
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— 8B — 3TAr  — (BDecays & Det. ER == Total Bkg

Einal snl Data : 185(()};:/ ER i iii: — Accidentals e Data
) RN RERES LA AR ERRSY RSN AR LRARY BAR N RRASY RESRE RESA] RARAE ERSA] FRARS RSN RRARY RERR
10" F |
e Projecting onto
electronic-equivalent
reconstructed energy ("keVee")
& okl
e Data histogram shown as black > 10t
points 2,
e Best fit with no WIMP signal § -
yields p-value of 0.96 00k i ﬁr;i: _
e Expected range of statistical il L :
fluctuations for best-fit: Lu j‘] |
light-blue boxes L[w
10"] L i T b b b b Lo bl s b Ly YIN W
1 2 3 45 6 78 9 10 11 12 13 14 15 16 17
Source Expected Events Best Fit Reconstructed Energy [keV ]
B decays + det ER 218 + 36 222 + 16
v ER 27.3 = 1.6 27.3 &= 1.6
127Xe 9.2 £+ 0.8 9.3 £+ 0.8
124Xe 50 + 1.4 52 + 1.4
196 Xe 15.2 & 2.4 15.3 + 2.4
®B CEvNS 0.15 £ 0.01 0.15 £ 0.01
Accidentals 1.2+ 0.3 1.2 + 0.3
Subtotal 276 £ 36 281 + 16
STAr [0, 291] 52178
Detector neutrons 0.010-2 0.010-2
30 GeV/c?* WIMP - 0.079¢
Total - 333 £ 17 39
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SR1 Data

<140
e Black points: events passing all cuts. s00l" ¢ =120
e Gray points: events passing all cuts T100
except for fiducial volume. = 400
e Red x: events failing LXe skin veto = _:80
cut (mostly ' Xe) = i P
: - =600 :
® Blue circle: events failing OD tag & 140
veto. i
800 120
| | | | | — | ) 10
1000 1 1 1 11 1 1 | N I . | N N N I I I | S N I N N N | | N N I Iy | I T T O
0 20° 30° 407 50° 60° 70°
Reconstructed 2 [cm?]
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Background-only expectation of data

e Gray regions: |- and 2-sigma extent
of expected backgrounds in the

WIMP Search (nOt inCIUding SB 4.50_ T T T T T [ T T T T[T T 1T (I()ll\l S IILJI] \l LB L L
. - 0.8 kat, O( 'CV,”_ 5.4 ke 7 g
neutrinos, green) 475 I 45 ,\,C\t £6Veo ‘ .
e 276 * 36 events expected, not Tl !
: ‘o 37 I "
including “Ar. 400l e g
e We bound the *’Ar with a uniform = i I e E
: < 0 Tl SRR L i
constraint between 0 and 291 2375 N i
events Q o i
@ I I/ - I
Source Expected Events = 3.50[ |7 8
,B decays + det ER 218 £+ 36 %D I |, . 30 GeV WIMP :
v ER 273+ 1.6 T 325k 7 :
27Xe 9.2 £ 0.8 o\ 5 :
124Xe 50 £ 1.4 3 00 R / i
136y o 15.2 + 2.4 R ,'/ J# 0.9 keVe, 2.9 keV, 5.1 keVe. 7.4 keV, :
8B CEuNS 0.15 + 0.01 . L W) 5 }\'C\""m l 15 l\'cl\f’m. | 25 l\‘c\f’lm. l 35 kc\*’nlr y
. .75 1 1 1 1 | 1 1 | 1 1 1 1 1 1 | 1 | 1 1 | 1 | 1 1 1 | | 1 | 1 1 |
Accidentals 1.2 0.3 0 10 20 30 40 50 60 70 20
Ar [0, 291]
Detector neutrons 0.07°-2
30 GeV/c®* WIMP -
Total —
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