

Muon g-2 experiment at Fermilab

Exploring the Precision Frontier of Particle Physics

Cheng CHEN July 7 2023 @ WIN2023

- Introduction
- Fermilab Muon g-2 experiment (Run-1)
- Improvements afterwards
- Outlook

Motivation: from the Standard Model to New Physics

TSUNG-DAO LEE INSTITUTE

Motivation: a story of g-2

Electron g-2 measurement

- Played an important role in the development of QFT
- Now be used to define the renormalized value of α
- ➡ Precision up to 0.13 ppt Phys. Rev. Lett. 130, 071801

Muon g-2 measurement

- → More sensitive to new types of virtual particles $(m_{\mu}/m_e)^2 \simeq 43,000$
- Now be used to detect new physics BSM

TSUNG-DAO LEE INSTITUTE

以天之语 解物之道

Standard Model Prediction of a_µ

- Perturbative terms
 - → QED: largest, evaluated up to $\mathcal{O}(\alpha^5)$
 - EW: suppressed by $(m_{\mu}/M_W)^2$
- Non-perturbative terms
 - ⇒ HVP
 - ⇒ HLbL

Calculated with first principal (Lattice-QCD) or data-driven (dispersion relation) approaches

• Data-driven calculation of $a_{\mu}^{\rm HVP,LO}$

$$a_{\mu}^{\text{HVP,LO}} = \frac{\alpha^2}{3\pi^2} \int_{M_{\pi}^2}^{\infty} \frac{ds}{s} \frac{\sigma_{e^+e^- \to \text{hadrons} + \gamma}}{\sigma_{e^+e^- \to \mu^+\mu^-}} \cdot K(s)$$

• $a_{\mu}(SM) = 116591810(43) \times 10^{-11}$ (0.37 ppm) Phys. Rep. 887, 1 (2020)

Current Status

- FNAL Run-1 measurement published on 7 April 2021 (0.46 ppm)
 - ✓ Consistent with previous BNL result
 - ✓ 4.2 σ from theoretical prediction (2020) (used dispersion relation for $a_{\mu}^{\text{HVP,LO}}$)
- New Lattice-QCD calculation of the $a_{\mu}^{\text{HVP,LO}}$ is in tension with the data-driven prediction
 - ✓ 4.2 σ (dispersion) → 1.5 σ (lattice-QCD)

 a_{μ} (FNAL) = 116 592 040(54) × 10⁻¹¹ (0.46 ppm) a_{μ} (Exp) = 116 592 061(41) × 10⁻¹¹ (0.35 ppm)

Principal of g-2 Measurement in a Storage Ring

Main analyses

• The a_{μ} determined from 3 main analyses \checkmark Anomalous precession frequency: $\omega_a = \omega_s - \omega_c$ \checkmark Magnetic field: ω_p \checkmark Beam dynamics: M(x,y,\phi) $\longrightarrow \widetilde{\omega}_p(T_r)$

How the a_{μ} finally determined

TSUNG-DAO LEE INSTITUTE

- Introduction
- Fermilab Muon g-2 experiment (Run-1)
- Improvements afterwards
- Outlook

The Fermilab Muon Source

- Accelerator protons delivered by Recycler Ring
 - →Boosted to 8 GeV
 - ⇒16 bunches x 10¹² protons
- Hit a fixed Inconel target at AP0 to produce π^+
 - ➡Per 1.4s
 - →Long beam line to collect $\pi^+ \rightarrow \mu^+$
- $p/\pi/\mu$ enter the Delivery Ring
 - → π^+ decay away, p aborted
 - → μ^+ extracted
- $\cdot \mu^+$ delivered by the Muon Campus
 - →Highly polarized
 - ⇒p=3.094 GeV/c
 - *⇒*τ=γτ₀≈64 µs

TSUNG-DAO LEE INSTITUTE

G-2 Storage Ring: Muon Injection

- Inflector to cancel the magnetic field, create fieldfree region for muon injection
- Fast kicker system knock μ^+ into their expected orbit
- X-direction constrained by 1.45 T magnetic field
- Y-direction constrained by \overrightarrow{E} from 4 ESQs

TSUNG-DAO LEE INSTITUTE

以天之语 解物之道

以天之语 解物之道

G-2 Storage Ring: Detector System

- Beam profile monitors: IBMS (x,y), TO (time) •
- 24 calorimeters to detect the energy and time of e^+ for ω_a analysis
 - Constructed with 6x9 PbF₂ crystals
 - Coupled with 144 mm² SiPM
- 2 tracker station to detect the decay vertex of μ^+ in beam dynamic analysis
 - ✓ 8 modules with 64+64 straw tubes

Measurement of the Magnetic Field

- Measure magnetic filed in terms of ω_p with NMR probes
- 378 fixed probes and 3D trolley mapping (per 3 days)
- Trolley cross-calibrated to absolute probes (water sample)

Fixed Probe

Fixed probes map TSUNG-DAO LEE INSTITUTE

Trolley run 以天之语 解物之道

Absolute calibration

Magnetic Field Distribution and Calibration

Principal of Beam Motion

• Cyclotron motion and x-,y-oscillations:

• $\omega_c = \frac{v}{2\pi r_0}$

•
$$\omega_x \approx \omega_c \sqrt{1-n}$$

• $\omega_v \approx \omega_c \sqrt{n}$ ($e\kappa = n \cdot \omega_c^2$)

Dataset	$\delta \omega_a^m$ (stat) (ppb)	ESQ (kV)	Effective field index	Kicker (kV)
Run-1a	1206	18.3	0.108	130
Run-1b	1024	20.4	0.120	137
Run-1c	825	20.4	0.120	130
Run-1d	676 ^a	18.3	0.107	125

TSUNG-DAO LEE INSTITUTE

Measurement of the Beam Motion

Muon distribution

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\widetilde{\omega}'_p(T_r)} = \frac{f_{clock} \,\omega_a^m \,\left(1 + C_E + C_p + C_{lm} + C_{pa}\right)}{f_{cali} \left\langle \omega_p(x, y, \phi, T_r) \times M(x, y, \phi) \right\rangle \left(1 + B_q + B_k\right)}$$

- *e*⁺ trajectories reconstructed from tracker data
- Extrapolate the trajectories to build μ^+ decay vertex
- Extrapolate to full azimuth with Geant4 based simulation tools

Principal of \omega_a measurement

- Muons produced from pion decay are highly polarized
 - $\begin{array}{c} \nu_{\mu}^{L} & \mu^{+} \\ \hline & & \\ &$
- Momentum direction of high energy positrons indicate the direction of muon spin

 ω_a can be measured as the time modulation of positron energy distribution

 e^+ Signal from Muon Decay: $N_{\text{ideal}}(t) = N_0 \exp\left(-t/\gamma \tau_{\mu}\right) \left[1 + A \cos\left(\omega_a t + \phi\right)\right]$

TSUNG-DAO LEE INSTITUTE

以天之语 解物之道

季改道研究所

Pileup effect

- ≥2 positrons hit at the calorimeter in a short time and reconstructed as 1 single positron
- ✓ Evidence of pileup effect in the uncorrected energy spectrum
- 150 N / 10MeV 10 Shadow method ······· PDF approach N × 10⁻³ / 0.1 GeV 05 **Empirical approach** 10 105 10 10³ 10² 10 3.094GeV 0 9000 2000 6000 7000 10000 3.5 5.5 З 4.5 energy [MeV] Energy [GeV]

- 3 dedicated approaches to correct the pileup contamination: shadow, PDF and empirical
- \checkmark Performance of the pileup corrections

以天之语 解物之迫

Measurement of ω_a^m

• Extract the ω_a^m through fit to the "wiggle" histogram

How the a_{μ} finally determined

Run-1 results

• Dominated by statistical uncertainty

Quantity	Correction [ppb]	Uncertainty [ppb]
ω_a (statistical)	-	434
ω_a (systematic)	-	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{calib}\langle \omega_p'(x,y,\phi)\cdot M(x,y,\phi)\rangle$	-	56
B_q	-17	92
B_k	-27	37
μ_p'/μ_e	-	10
m_μ/m_e	-	22
g_e	-	0
Total systematic	-	157
Total external factors	-	25
Total	544	462

a_{μ} (FNAL) = 116 592 040(54) × 10⁻¹¹ (0.46 ppm) a_{μ} (Exp) = 116 592 061(41) × 10⁻¹¹ (0.35 ppm)

- Introduction
- Fermilab Muon g-2 experiment (Run-1)
- Improvements afterwards

• Outlook

Kicker Upgrade

Kicker "knock" the muons to their expected orbit

- Upgrade since run1:
 - ✓ New kicker cable allow for proper kicker
 - \checkmark Reducing the equilibrium radius

ESQs Upgrade

- 4 ESQs to provide vertical focus of muons
- Upgrade since run-1:
 - \checkmark Fixed the broken resistors in run-1
 - ✓ Additional RF on the ESQ since the end of run-4 allows to reduce the CBO

TSUNG-DAO LEE INSTITUTE

Field Measurement Upgrade

 Magnetic field provided by the superconducting magnets

Field stability improved since run-1:
 ✓ Thermal insulation (run-2)
 ✓ Improved AC (run-3)

Positron Reconstruction Upgrade

- Run-1 used constant time resolution to separate positrons
- Energy dependent time resolution introduced to reduce pileup, by a factor of 4

Pileup formula improvement (SJTU)

29

- Estimated the pileup to second order, corrected the formula
- Better agreement between raw and reconstructed pileup spectrum in pileup region

Improved Pulse-fitter (SJTU)

- Pulse-fitter reconstruct the (E,t) of digitized waveforms
- Changed the fitter behavior in fitting multiple-pulses
- Improved the energy dependence of the muon loss rate

run 24683, subrun 166, fill 2, island 88, calo 1 xtal 17, time 196.9µ s

よいとれら雨 χ^2 distribution UTE z 70 χ² of of new fitter 60 50 40 x² of of old fitter 30 20 10 Run 4U 🍯 old 0.002 🌔 new 0.000 a {loss] -0.002 -0.004 -0.006 500 1000 1500 2500 3000 2000 Energy Bin Center [MeV]

30

- Introduction
- Fermilab Muon g-2 experiment (Run-1)
- Improvements afterwards

• Outlook

李校道研究所 TSUNG-DAO LEE INSTITUTE

From BNL to FNAL Run-6

- Run-1 is only ~5% of the final dataset
 √434 ppb stat ⊕ 157 ppb syst
 ✓Finalized in April 2021
- Run-2/3 analysis is about to finalize
 ✓ 200 ppb stat ⊕ 100 ppb syst (expected)

 ✓ Publication this summer (expected)
- Run-6 is still ongoing
 √21.11xBNL in total

✓150 billion of raw e⁺ in total

Residual Slow Effect in Run-1

- In Run-1, there are remaining early-to-late slow effect after all corrections
- Evidence observed in residual FFT and kloss vs energy
- Tested different models to remove this slow effect
 - \checkmark No correction applied
 - ✓ ~20 ppb difference among models considered as systematic uncertainty

TSUNG-DAO LEE INSTITUTE

以天之语 解物之道

Drop of kloss in high energy region

Possible reason of the residual slow effect

- More significant slow effect in RW compared to RE
- Higher residual threshold in RW pulse-fitter can introduce early-to-late effect

Ad-hoc gain correction in Run-1

• Gain-like effect first introduced by Aaron

$$G_{ad-hoc} = 1 + \delta_N \times 10^{-3} \times e^{-t/\tau} \cdot [1 - \delta_A \cdot \cos(\omega_a t + \phi)]$$

- Explained as "a gain perturbation" in the start time
- Improves the kloss vs energy in high energy region

以天之语

TSUNG-DAO LEE INSTITUTE

Pileup Correction with Shadow Method

• Pileup rate is proportional to the $\rho(t)^2$

 $\rho(t)^2 \propto N(t)^2$

• Pileup rate is proportional to the $N(t)^2$

 $\rho(t)^2 \cong \rho(t')\rho(t' + \Delta t)$

• Reconstructed from shadow clusters

$$\rho_{PU}(E,t) = d_{12} - d_1 - d_2$$

First-order	d_1	d_2	d_{12}
Energy	E_1	E_2	E_{12}

Performance of pileup correction

- Most of the high energy entries (>3.1 GeV) are removed
- Only first-order correction in SJTU-Run1
- Included the second-order correction for Run2/3

In-Fill Gain Correction

- Gain drop during a fill monitored with laser calibration system
- Gain correction function is extracted as

$$G(t; \alpha, \tau) = 1 - \alpha \cdot \exp(-\frac{t}{\tau})$$

• Typical uncertainties (DS-2C):

$$\langle \frac{\Delta lpha}{lpha}
angle \sim 5~\%$$
 , $\langle \frac{\Delta au}{ au}
angle \sim 0.7~\%$ DocDB27859 L. Cotrozzi

TSUNG-DAO LEE INSTITUTE

Short Term gain function g(t)

Short-Term Double-Pulse (STDP) Correction

- Caused by the finite recovery time of SiPM and amplifier
- Correction for consecutive hits within $\Delta t \sim 15$ ns
- Typical uncertainties for Run-2/3

$$\sqrt{\alpha} \sim 2\%/\text{GeV}, \left\langle \frac{\Delta \alpha}{\alpha} \right\rangle \sim 2\%$$

$$\sqrt{\tau} \sim 15 \text{ ns}, \left\langle \frac{\Delta \tau}{\tau} \right\rangle \sim 2\%$$

$$\sqrt{\beta} \sim 5\%/^{\circ}C \text{ (Run-2 only)}$$

 $G(E_1, \Delta t, T; \alpha, \tau, \beta) = 1 - E_1 \cdot \alpha \cdot (1 + \beta T) \cdot \exp(-\frac{\Delta t}{2})$

General Strategy of Gain Systematics

Rescale the parameters (α,τ) with a multiplier m

• Extract the R-sensitivity as $\frac{dR}{dm}$

 Systematic uncertainty is then estimated as

$$\sigma(R) = \frac{dR}{dm} \cdot \sigma(m)$$

Electric Field Correction

$$\mathscr{R}'_{\mu} = \frac{\omega_{a}}{\widetilde{\omega}'_{p}(T_{r})} = \frac{f_{clock} \, \omega_{a}^{m} \, (1 + C_{E} + C_{p} + C_{lm} + C_{pa})}{f_{cali} \left\langle \omega_{p}(x, y, \phi, T_{r}) \times M(x, y, \phi) \right\rangle \, (1 + B_{q} + B_{k})}$$

$$\varepsilon_{e} \approx 2n(1 - n)\beta_{0}^{2} \frac{\langle x_{e}^{2} \rangle}{R_{0}^{2}}$$

$$\varepsilon_{e} \approx 2n(1 - n)\beta_{0}^{2} \frac{\langle x_{e}^{2} \rangle}{R_{0}^{2}}$$

$$\varepsilon_{e} \approx 2n(1 - n)\beta_{0}^{2} \frac{\langle x_{e}^{2} \rangle}{R_{0}^{2}}$$

$$\frac{d(\hat{\beta} \cdot \vec{S})}{dt} = -\frac{q}{m} \vec{S}_{T} \cdot \left[a_{\mu} \hat{\beta} \times \vec{B} + \beta \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \vec{E}_{c}\right] \int_{e}^{E} dt$$

$$Mex = Mex^{2}$$

$$Mex = Mex^{2}$$

$$Mex = Mex^{2}$$

Pitch Correction

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\widetilde{\omega}'_p(T_r)} = \frac{f_{clock} \,\omega_a^m \,\left(1 + C_E + C_p + C_{lm} + C_{pa}\right)}{f_{cali} \left\langle \omega_p(x, y, \phi, T_r) \times M(x, y, \phi) \right\rangle \left(1 + B_q + B_k\right)}$$

- Correction needed since $\hat{\beta}$, \overrightarrow{B} are not exactly perpendicular
- Based on the vertical distribution of muons

$$\frac{d(\hat{\beta} \cdot \vec{S})}{dt} = -\frac{q}{m}\vec{S}_T \cdot \left[a_{\mu}\hat{\beta} \times \vec{B} + \beta\left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right)\frac{\vec{E}}{c}\right]$$

Not perpendicular

TSUNG-DAO LEE INSTITUTE

Lost muon correction

$$\mathscr{R}'_{\mu} = \frac{\omega_a}{\widetilde{\omega}'_p(T_r)} = \frac{f_{clock} \,\omega_a^m \,\left(1 + C_E + C_p + C_{lm} + C_{pa}\right)}{f_{cali} \left\langle \omega_p(x, y, \phi, T_r) \times M(x, y, \phi) \right\rangle \left(1 + B_q + B_k\right)}$$

- Lost muon have different leads to time dependent φ(t)
- Corrections estimated as bias between constant φ_0 and time-dependent $\varphi(t)$

$$\frac{d\varphi_0}{dt} = \frac{d\varphi_0}{d\langle p \rangle} \underbrace{\frac{d\langle p \rangle}{dt}}_{\text{from different of lost muon}} \neq 0$$

Phase acceptance correction

-10

-20

-30

-40

-50

-60

Detected Phase [mrad]

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\widetilde{\omega}'_p(T_r)} = \frac{f_{clock} \,\omega_a^m \,\left(1 + C_E + C_p + C_{lm} + C_{pa}\right)}{f_{cali} \left\langle \omega_p(x, y, \phi, T_r) \times M(x, y, \phi) \right\rangle \left(1 + B_q + B_k\right)}$$

40

20

- Muons have coordinate dependent phase which not reflected in the nominal fit function
- Decay y [mm] • How to estimate the correction: -20 1. Measure the phase map 2. Create pseudo data -40 3. Fit pseudo data and get the bias -20 20 40 -40 n [mm] $N(t, E) = N_0(E)e^{-t/\gamma \tau_{\mu}} \{1 + A(E)\cos[\omega_a t + \varphi_0(E)]\}$

Magnetic Field Corrections

46

解物之道 以天之语

What's the Calorimeter Observes

- 24 Calorimeters sampling the beam by cyclotron frequency ω_c
- Radial oscillation observed as (aliased) $\omega_{CBO} = \omega_c \omega_x$
- Beam width oscillation observed as $2\omega_{CBO}$
- Vertical oscillation observed as ω_{v}
- Vertical width oscillation observed as (aliased) $\omega_{VW} = \omega_c 2\omega_y$

		Frequenc	Frequency $(rad/\mu s)$		
Physical frequency	Calculated expression	n = 0.108	n = 0.120		
ω_c	v/R_0	42.15	42.15		
ω_x	$\sqrt{1-n\omega_c}$	39.81	39.54		
ω_{v}	$\sqrt{n}\omega_c$	13.85	14.60		
w _{CBO}	$\omega_c - \omega_x$	2.34	2.61		
$\omega_{ m VW}$	$\omega_c - 2\omega_y$	14.45	12.95		
ω_a	$ea_{\mu}B/m$	1.44	1.44		

Muon Loss in the Storage Ring

Muon losses due to interact with collimator or other effects

$$N_0 \rightarrow N_0 \Lambda(t) = N_0 \left(1 - K_{\text{loss}} \int_0^t e^{t'/\gamma \tau_{\mu}} L(t') dt' \right)$$

 Identification: µ⁺ sequentially hit ≥3 calorimeters with MIP energy deposits (≈170 MeV)

TSUNG-DAO LEE INSTITUTE

Source of systematic uncertainties

- Calorimeter gain changes
- Imperfect pileup correction
- Beam dynamics modeling: CBO, muon loss
- Others: randomization

Changing CBO frequency data from tracker data

TSUNG-DAO LEE INSTITUTE

Systematic uncertainties in ω_a^m analysis

		Systematic	Run1a	Run1b	Run1c	Run1d
Gain effects	in fill gain amplitude	2	7	4	5	
	in fill gain time constant	2	1	1	4	
	STDP gain amplitude	<1	<1	<1	<1	
		residual gain	77	14	4	39
		pileup amplitude	14	13	9	7
 Plieup correction 	pileup time model	47	53	44	41	
	pileup energy model	11	8	12	7	
		unseen pileup	1	2	2	4
 Beam dynamics 		triple pileup	4	5	4	4
	Beam dynamics	CBO frequency	7	13	13	13
		CBO envelope	20	3	8	3
 Time randomization 	CBO time constant	2	9	6	1	
		lost muon	<1	<1	<1	<1
	ime randomization	time randomization	27	17	15	11
		total systematic	116	87	77	77

