A quark and lepton model with flavor specific DM and muon g-2 in modular A₄ and hidden U(1) symmetry

Takaaki Nomura (Sichuan Univ.)

Collaborating with Hiroshi Okada (arXiv: 2304.13361)

2023-07-07 @ WIN2023, Zhuhai

- 2. Model setup
- 3. Phenomenology
- 4. Summary and discussion

Some issues in the SM suggesting new physics

Existence of dark matter in our Universe

Non-Zero Neutrino mass

*****We need a mechanism to generate neutrino mass

Smallness of the mass should be explained

□ Flavor structure

*****There is no principle to determine flavor structure in the SM

*****A symmetry would explain it

□Some experimental anomalies

♦Muon g-2

*****W boson mass anomaly

∻Etc.

Neutrino mass and mixing

··· · · · / · / · · · ·

			nttp://w	ww.nu-fit.c	org/?q=noae	/228	NuFIT 5.0 (2020)
				Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.7)$
				bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
Mivina			$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
winning			$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
,			$\sin^2 \theta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575\substack{+0.017\\-0.021}$	$0.411 \rightarrow 0.621$
			$\theta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$
$\mathcal{V}_{I} = (\mathcal{U}_{I})_{D}$	\mathbf{V}		$\sin^2 \theta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \to 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \rightarrow 0.02436$
$l (\stackrel{\bullet}{\bullet} P_{I})$	MNS J _{1i} ' i		$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61\substack{+0.12\\-0.12}$	$8.24 \rightarrow 8.98$
	• 11		$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \to 403$	286^{+27}_{-32}	$192 \to 360$
-lavor eigenstate	Mas	ss eigenstate	$\frac{\Delta m^2_{21}}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
(I=e,µ,т)		(i=1,2,3)	$\frac{\Delta m^2_{3\ell}}{10^{-3} \ {\rm eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$
$U_{\rm PMNS} = \begin{pmatrix} & & \\ -s_{12}c_{23} - & \\ s_{12}s_{23} - & \\ \end{pmatrix}$	$c_{12}c_{13}$ - $c_{12}s_{23}s_{13}e^{i\delta_{CP}}$ $c_{12}c_{23}s_{13}e^{i\delta_{CP}}$	$s_{12}c_{13}$ $c_{12}c_{23} - s_{12}s_{23}$ $-c_{12}s_{23} - s_{12}c_{23}$	$_{23}s_{13}e^{i\delta_{O}}s_{23}s_{13}e^{i\delta_{O}}s$	s ₁₃ e ⁻ ^{CP} s ₂₃ δ _{CP} c ₂₃	$ \begin{pmatrix} -i\delta_{CP} \\ c_{13} \\ c_{13} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $	$\begin{array}{c} 0 \\ e^{irac{lpha_{21}}{2}} \\ 0 \end{array} e^{irac{lpha_{21}}{2}} \end{array}$	$\begin{pmatrix} 0 \\ 0 \\ i^{\frac{\alpha_{31}}{2}} \end{pmatrix},$ (II.14)
	$\Delta m_{ m sol}^2 = m_{ m sol}^2$	$m_2^2 - m_1^2$,					

(NH):
$$\Delta m_{\rm atm}^2 = m_3^2 - m_1^2$$
, (IH): $\Delta m_{\rm atm}^2 = m_2^2 - m_3^2$,

Mixing and mass differences are measured by neutrino oscillation experiments

Neutrino mass and mixing is a mystery in particle physics

How can we generate neutrino masses?

How can we explain its smallness

- Ordering of neutrino mass : normal or inverted?
- Symmetry behind mixing pattern?

Muon anomalous dipole magnetic moment (muon g-2)

Borsanyi et al (BMWc), Nature 2021

They make SM prediction closer to experimental values (~1.5 σ)

In any case the muon g-2 is good hint/test of new physics

A model with flavor symmetry is interesting in considering these issues

✓ Neutrino masses (+ charged lepton and quark)

- Mass matrix is controlled by a symmetry giving predictions
- ✓ DM physics
 - Absence of DM detection would be hint of flavor specific interaction. i.e. If DM interaction is flavor specific it is difficult to detect.
- ✓ Muon g-2
 - Realization of muon specific interaction would explain muon g-2 without other LFV constraint

Modular flavor symmetry framework is interesting possibility

Modular flavor symmetry

F. Feruglio, doi:10.1142/9789813238053_0012 [arXiv:1706.08749 [hep-ph]].
R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437-467 (2012) doi:10.1016/j.nuclphysb.2012.01.017 [arXiv:1112.1340 [hep-ph]].

Originated from extra dimensional symmetry (e.g. transformation on torus) Non-Abelian discrete symmetry appears : A_4 , S_4 , etc.

We can get prediction for measurements in neutrino sector: mixings, CP-phases, sum of neutrino masses, etc.

It is also interesting to apply modular symmetry in new physics models

- > We would get predictions for new physics sector
- Some nature of modular symmetry can be used in realizing specific neutrino mass generation mechanism

Let us focus on Modular A₄ symmetry

Yukawa couplings can be given by modular forms transformed under A₄

$$\begin{split} f_i(\gamma\tau) &= (c\tau+d)^k \rho(\gamma)_{ij} f_j(\tau) \ , & \text{k: modular weight} \\ \rho: \mathsf{A}_4 \text{ transformation matrix} \\ \left(\tau \longrightarrow \gamma\tau = \frac{a\tau+b}{c\tau+d} \ , & \text{where} \ a, b, c, d \in \mathbb{Z} \ \text{ and} \ ad - bc = 1, \ \operatorname{Im}[\tau] > 0 \ , \right) \end{split}$$

It can be originated from transformation of lattice vector characterizing torus; compactified extra dimension, coming from string theory

Field is also transformed by

 $\phi^{(I)} \to (c\tau + d)^{k_I} \rho^{(I)}(\gamma) \phi^{(I)}$

Yukawa term can be invariant under modular transformation

Sum of modular weight = 0, invariant under A₄
Ex)
$$f \Phi_i \Phi_j \Phi_k$$
 $(k_f + k_{\Phi_i} + k_{\Phi_j} + k_{\Phi_k} = 0)$

Yukawa couplings will be given by modular forms

$$\mathbf{Y}_{3}^{(2)}(\tau) = \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \end{pmatrix} = \begin{pmatrix} 1 + 12q + 36q^{2} + 12q^{3} + \dots \\ -6q^{1/3}(1 + 7q + 8q^{2} + \dots) \\ -18q^{2/3}(1 + 2q + 5q^{2} + \dots) \end{pmatrix}, \quad q = e^{2\pi i \tau}, \quad \text{Basis}$$

They are function of modulus **T**

$$Y_{1'}^{(4)} = Y_3^2 + 2Y_1Y_2,$$

 $Y_1^{(4)} = Y_1^2 + 2Y_2Y_3,$

All modular form has even modular weight

$$Y_{\mathbf{3}}^{(6)} \equiv \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} y_1^3 + 2y_1y_2y_3 \\ y_1^2y_2 + 2y_2^2y_3 \\ y_1^2y_3 + 2y_3^2y_2 \end{bmatrix}, \quad Y_{\mathbf{3}'}^{(6)} \equiv \begin{bmatrix} f_1' \\ f_2' \\ f_3' \end{bmatrix} = \begin{bmatrix} y_3^3 + 2y_1y_2y_3 \\ y_3^2y_1 + 2y_1^2y_2 \\ y_3^2y_2 + 2y_2^2y_1 \end{bmatrix}$$

Applying modular symmetry to new physics model

- Predictions for neutrino sector
- Predictions for new physics sector

ex) mass spectrum and/or BRs of extra particles

Control flavor dependence on interactions

ex)DM coupling, interaction realizing muon g-2

 Nature of modular symmetry can be used to realize structure of specific neutrino mass generation

2. Model setup

- 3. Phenomenology
- 4. Summary and discussion

We consider a model based on $G_{SM} \times U(1)_H \times A_4^{Modular}$ Particle contents and symmetry assignments

		Ι	epto	\mathbf{ns}					Qu	arks				Hig	ggs
	L_e	L_{μ}	$L_{ au}$	\bar{e}	$\bar{\mu}$	$ar{ au}$	Q	$ar{u}$	\bar{c}	$ar{t}$	$ar{d}$	\overline{s}	\bar{b}	H_u	H_d
$SU(2)_L$	2	2	2	1	1	1	2	1	1	1	1	1	1	2	2
$U(1)_Y$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	1	$\frac{1}{6}$	$-\frac{2}{3}$	$-\frac{2}{3}$	$-\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	$\frac{1}{2}$
A_4	1	1′	1″	1″	1″	1′	3	1	1″	1′	1	1″	1′	1	1
-k	0	-4	-4	0	-2	-2	-2	-4	-4	-4	0	0	0	0	0

SM sector

	$\bar{U}, \ U$	\bar{D}, D	$\bar{E}, \; E$	$ar{N},\ N$	χ_u	$arphi_u$	χ_d	φ_d	φ_u'	φ_d'
$SU(2)_L$	1	1	1	1	1	1	1	1	1	1
$U(1)_Y$	$-\frac{2}{3}, \frac{2}{3}$	$\frac{1}{3}, -\frac{1}{3}$	1, -1	0	0	0	0	0	0	0
$U(1)_H$	0, 1	0, -1	0, -1	0, 1	1	-1	-1	+1	-2	2
A_4	singlets	singlets	1	3	1	1	1	1	1	1
-k	(0, odd)	$(0, \mathrm{odd})$	(-1, 0)	-2	-2	-3	-2	-3	0	0

Dark sector

- SM sector is neutral under U(1)_H DM candidate in the model
- Modular weights are chosen to control interactions

Lagrangian of the model Superpotential (Quark sector, only for SM mass term)

Superpotential (Lepton sector)

$$\begin{split} \mathcal{W}_{\ell} &= y_e \bar{e} H_d L_e + y_{\mu} \bar{\mu} H_d L_{\mu} + y_{\tau} \bar{\tau} H_d L_{\tau} + y'_{\ell} \bar{e} H_d L_{\tau} & \longrightarrow \text{Charged lepton masses} \\ & + f_{\mu} \bar{\mu} E \chi_u + y_{D_1} Y_3^{(2)} \bar{N} H_u L_{L_e} + y_{D_2} Y_3^{(6)} \bar{N} H_u L_{L_{\mu}} + y'_{D_2} Y_{3'}^{(6)} \bar{N} H_u L_{L_{\mu}} \\ & + y_{D_3} Y_3^{(6)} \bar{N} H_u L_{L_{\tau}} + y'_{D_3} Y_{3'}^{(6)} \bar{N} H_u L_{L_{\tau}} \\ & + M_{R_1} [\bar{N} \bar{N}]_1 + M_{R_2} [\bar{N} \bar{N}]_{1''} + M_{R_3} [Y_3^{(4)} \bar{N} \bar{N}]_3 \\ & + y_{L_1} \varphi'_u [NN]_1 + y_{L_2} \varphi'_u [NN]_{1''} + y_{L_3} \varphi'_u [Y_3^{(4)} NN]_3, \end{split}$$

We omit A₄ singlet modular forms (absorbing it in free parameter) DM interaction is muon specific due to symmetry

Quark mass

Up-type mass matrix

$$M_{u} = v_{u}\gamma_{u} \begin{pmatrix} \tilde{\alpha}_{u} & 0 & 0 \\ 0 & \tilde{\beta}_{u} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} Y_{1}^{(6)} & Y_{3}^{(6)} & Y_{2}^{(6)} \\ Y_{2}^{(6)} & Y_{1}^{(6)} & Y_{3}^{(6)} \\ Y_{3}^{(6)} & Y_{2}^{(6)} & Y_{1}^{(6)} \end{pmatrix} + \begin{pmatrix} g_{u1} & 0 & 0 \\ 0 & g_{u2} & 0 \\ 0 & 0 & g_{u3} \end{pmatrix} \begin{pmatrix} Y_{1}^{'(6)} & Y_{3}^{'(6)} \\ Y_{2}^{'(6)} & Y_{1}^{'(6)} \\ Y_{3}^{'(6)} & Y_{2}^{'(6)} \end{pmatrix} \end{bmatrix}$$
$$\tilde{\alpha}_{u} = \alpha_{u}/\gamma_{u}, \ \tilde{\beta}_{u} = \beta_{u}/\gamma_{u}, \ g_{u1} = \alpha_{u}'/\alpha_{u}, \ g_{u2} = \beta_{u}'/\beta_{u} \ \text{and} \ g_{u3} = \gamma_{u}'/\gamma_{u} \ \text{Complex}$$
$$\alpha_{u}, \ \beta_{u} \ \text{and} \ \gamma_{u} \ \text{Real}$$

Down-type mass matrix

$$M_{d} = v_{d}\gamma_{d} \begin{pmatrix} \tilde{\alpha}_{d} & 0 & 0 \\ 0 & \tilde{\beta}_{d} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Y_{1} & Y_{3} & Y_{2} \\ Y_{2} & Y_{1} & Y_{3} \\ Y_{3} & Y_{2} & Y_{1} \end{pmatrix}$$

 $ilde{lpha}_d = lpha_d/\gamma_d, \ eta_d = eta_d/\gamma_d$: Real

Quark mass

Some parameters, { $\alpha_{u(d)}$, $\beta_{u(d)}$, $\gamma_{u(d)}$ }, are fixed to fit quark masses using

$$\begin{aligned} \operatorname{Tr}[M_{u,d}M_{u,d}] &= |m_{u,d}|^2 + |m_{c,s}|^2 + |m_{t,b}|^2, \\ \operatorname{Det}[M_{u,d}^{\dagger}M_{u,d}] &= |m_{u,d}|^2 |m_{c,s}|^2 |m_{t,b}|^2, \\ (\operatorname{Tr}[M_{u,d}^{\dagger}M_{u,d}])^2 - \operatorname{Tr}[(M_{u,d}^{\dagger}M_{u,d})^2] &= 2(|m_{u,d}|^2 |m_{c,s}|^2 + |m_{c,s}|^2 |m_{t,b}|^2 + |m_{u,d}|^2 |m_{t,b}|^2). \end{aligned}$$

For simplicity we fixed $\tan\beta=5$

Applying observed values:

$$\begin{split} y_d &= (4.81 \pm 1.06) \times 10^{-6}, \quad y_s = (9.52 \pm 1.03) \times 10^{-5}, \quad y_b = (6.95 \pm 0.175) \times 10^{-3}, \\ y_u &= (2.92 \pm 1.81) \times 10^{-6}, \quad y_c = (1.43 \pm 0.100) \times 10^{-3}, \quad y_t = 0.534 \pm 0.0341, \\ \theta_{12}^{\text{CKM}} &= 13.027^{\circ} \pm 0.0814^{\circ}, \quad \theta_{23}^{\text{CKM}} = 2.054^{\circ} \pm 0.384^{\circ}, \quad \theta_{13}^{\text{CKM}} = 0.1802^{\circ} \pm 0.0281^{\circ}, \\ \delta_{CP} \text{ (quark)} &= 69.21^{\circ} \pm 6.19^{\circ}, \end{split}$$

Charged lepton mass

$$m_{\ell} = \frac{v_d}{\sqrt{2}} \begin{bmatrix} y_e & 0 & y'_{\ell} \\ 0 & y_{\mu} & 0 \\ 0 & 0 & y_{\tau} \end{bmatrix},$$

Mass eigenvalues are obtained by $\operatorname{diag}(|m_e|^2, |m_{\mu}|^2, |m_{\tau}|^2) \equiv V_{e_L}^{\dagger} m_{\ell}^{\dagger} m_{\ell} V_{e_L}$

Parameters, $\{y_e, y_\tau, y'_\ell\}$, are fixed to fit quark masses using

$$\begin{split} y_{\mu} &= \sqrt{2}m_{\mu}/v_{d} \\ \mathrm{Tr}[m_{\ell}m_{\ell}^{\dagger}] &= |m_{e}|^{2} + |m_{\mu}|^{2} + |m_{\tau}|^{2}, \\ \mathrm{Det}[m_{\ell}m_{\ell}^{\dagger}] &= |m_{e}|^{2}|m_{\mu}|^{2}|m_{\tau}|^{2}, \\ (\mathrm{Tr}[m_{\ell}m_{\ell}^{\dagger}])^{2} - \mathrm{Tr}[(m_{\ell}m_{\ell}^{\dagger})^{2}] &= 2(|m_{e}|^{2}|m_{\mu}|^{2} + |m_{\mu}|^{2}|m_{\tau}|^{2} + |m_{e}|^{2}|m_{\tau}|^{2}). \end{split}$$

Neutrino mass generation

We obtain active neutrino mass via Type-I seesaw mechanism **Dirac mass**: $\bar{N}m_D\nu$

$$m_{D} = \frac{y_{D_{1}}v_{d}}{\sqrt{2}} \begin{bmatrix} y_{1} \ y_{3}^{(6)} + \epsilon_{2}y_{3}^{\prime(6)} \ y_{2}^{(6)} + \epsilon_{3}y_{2}^{\prime(6)} \\ y_{3} \ y_{2}^{(6)} + \epsilon_{2}y_{2}^{\prime(6)} \ y_{1}^{(6)} + \epsilon_{3}y_{1}^{\prime(6)} \\ y_{2} \ y_{1}^{(6)} + \epsilon_{2}y_{1}^{\prime(6)} \ y_{3}^{(6)} + \epsilon_{3}y_{3}^{\prime(6)} \end{bmatrix} \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ \tilde{y}_{D_{2}} \ 0 \\ 0 \ 0 \ \tilde{y}_{D_{3}} \end{bmatrix} \equiv \frac{y_{D_{1}}v_{d}}{\sqrt{2}}\tilde{m}_{D},$$

 $\tilde{y}_{D_i}\equiv y_{D_i}/y_{D_1}$ and $\epsilon_i\equiv y_{D_i}/y'_{D_i}$ (i=2,3)

Majorana mass of N

$$M_{N} = M_{R_{3}} \left(\begin{bmatrix} 2y_{1}^{(4)} & -y_{3}^{(4)} & -y_{2}^{(4)} \\ -y_{3}^{(4)} & 2y_{2}^{(4)} & -y_{1}^{(4)} \\ -y_{2}^{(4)} & -y_{1}^{(4)} & 2y_{3}^{(4)} \end{bmatrix} + \epsilon_{M_{1}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \epsilon_{M_{2}} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \right) = M_{R_{3}}\tilde{M},$$

$$\epsilon_{M_{i}} \equiv M_{R_{i}}/M_{R_{3}} \text{ (i=1,2)}$$

$$m_{\nu} = \frac{y_{D_{1}}^{2}v_{d}^{2}}{2M_{R_{3}}}\tilde{m}_{D}^{T}\tilde{M}^{-1}\tilde{m}_{D} \equiv \kappa\tilde{m}_{\nu}$$

$$m_{\nu} = \frac{y_{D_1}^2 v_d^2}{2M_{R_3}} \tilde{m}_D^T \tilde{M}^{-1} \tilde{m}_D \equiv \kappa \tilde{m}_{\nu}$$

We take κ as free parameter and use to fit neutrino mass scale

$$(\text{NH}): \ |\kappa|^2 = \frac{|\Delta m_{\text{atm}}^2|}{\tilde{D}_{\nu_3}^2 - \tilde{D}_{\nu_1}^2}, \quad (\text{IH}): \ |\kappa|^2 = \frac{|\Delta m_{\text{atm}}^2|}{\tilde{D}_{\nu_2}^2 - \tilde{D}_{\nu_3}^2}, \\ D_{\nu} = |\kappa|\tilde{D}_{\nu} = V_{\nu}^T m_{\nu} V_{\nu} = |\kappa| V_{\nu}^T \tilde{m}_{\nu} V_{\nu} \qquad \text{Diagonalization} \\ \Delta m_{\text{sol}}^2 = |\kappa|^2 (\tilde{D}_{\nu_2}^2 - \tilde{D}_{\nu_1}^2)$$

PMNS matrix : $U = V_L^{\dagger} V_{\nu}$

- 1. Introduction
- 2. Model setup
- 3. Phenomenology
- 4. Summary and discussion

Numerical analysis

We globally scan our free parameters in the following region

 $|g_{u1,u2,u3}| \in [10^{-2}, 10^2].$ Quark sector $\{\tilde{y}_{D_{2,3}}, |\epsilon_{2,3}|, |\epsilon_{M_{2,3}}|\} \in [10^{-3}, 10^3]$ Neutrino sector

Perturbativity of original parameter is taken into account

Carrying out chi-square fitting using NuFit 5.2 data

http://www.nu-fit.org/?q=node/228

$$\chi^{2} = \sum_{i} \left(\frac{O_{i}^{\exp} - O_{i}^{theory}}{\delta_{i}^{\exp}} \right)^{2}$$

We separately consider quark and lepton sector

3. Phenomenology

Numerical results in quark sector

Allowed region of T

Blue: within 1 σ , Green: 1 σ to 2 σ , Yellow: 2 σ to 3 σ

Numerical results in quark sector

Range of allowed input parameters

$ g_{u1} $	$ g_{u2} $	$ g_{u3} $	$ ilde{lpha}_u$	$ ilde{eta}_{m{u}}$	γ_u
[0.071, 62]	[0.014, 50]	[0.012, 0.23]	$[2.6\times 10^{-5}, 330]$	$[9.2 imes 10^{-7}, 8.6]$	$[4.6 imes 10^{-5}, 0.27]$

$ ilde{lpha}_d$	$ ilde{eta}_d$	γ_d		
[0.0033, 0.015]	[0.0036, 0.015]	[0.026, 0.029]		

Numerical results in neutrino sector

Blue: within 1 σ , Green: 1 σ to 2 σ , Yellow: 2 σ to 3 σ , red: 3 σ to 5 σ

Ranges for other allowed parameters:

$ \epsilon_{M_1} $	$ \epsilon_{M_2} $	\widetilde{y}_{D_2}	\widetilde{y}_{D_3}	$ \epsilon_2 $	$ \epsilon_3 $
[0.00626, 867]	[0.00278, 896]	[0.00124, 1.828]	[0.0425, 0.975]	[0.0164, 947]	[0.00219, 2.67]

3.Phenomenology

Numerical results in neutrino sector

Majorana phases for allowed parameters

We find slight correlation between phases

Numerical results in neutrino sector

Sum of neutrino mass and effective mass for neutrinoless double β decay

The effective mass is small and difficult for detection

✤ Sum of neutrino mass is around 60 meV

3. Phenomenology

Checking overlap of T for quark and lepton sector

We have overlap at around some specific region

3.Phenomenology

A benchmark point with common T for both sector

au	1.053i
g_{u1}	-20.4551 - 3.89777i
g_{u2}	0.0422226 + 0.3087983
g_{u3}	0.0130486 + 0.0159581
$\hat{\alpha}_{u}$	0.713292
\hat{eta}_u	0.000426951
γ_u	0.023187
$\hat{\alpha}_d$	0.00392545
\hat{eta}_d	0.0152835
γ_d	0.028698
$ V_{us} $	0.224981
$ V_{cb} $	0.0428095
$ V_{ub} $	0.00413679
δ_Q	61.3284°
χ^2	10.6623

au	1.053i
ϵ_{M_1}	-1.34226 + 0.00413708i
ϵ_{M_2}	0.00945163 - 2.28048i
\tilde{y}_{D_2}	-0.0919822
$ ilde{y}_{D_3}$	-0.324861
ϵ_2	-7.77596 - 0.0157862i
€3	0.0415398 - 0.047376i
$\sin^2 \theta_{12}$	0.320588
$\sin^2 \theta_{23}$	0.457686
$\sin^2 \theta_{13}$	0.0213432
δ^ℓ_{CP}	56.1248°
α_{21}, α_{31}	$241.826^\circ,\ 205.144^\circ$
$\sum m_i$	$57.4937\mathrm{meV}$
$\langle m_{ee} \rangle$	$2.53293\mathrm{meV}$
χ^2	5.62011
χ^2	5.62011

Dark matter physics and muon g-2

Relevant Lagrangian (non supersymmetric writing)

$$-\mathcal{L}_{DM} = f_{\mu}\bar{\mu}E\chi_{u} - \mu_{\chi}^{2}\chi_{u}^{2} + y_{E}\bar{E}E\varphi_{d} + |m_{\chi}|^{2}|\chi_{u}|^{2} + \text{h.c.},$$

In our scenario, real component of χ_u is scalar DM (χ)

Dominant DM interaction:
$$-\mathcal{L}_{DM}^{\text{int.}} = \frac{f_{\mu}}{\sqrt{2}}\bar{\mu}E\chi + \text{h.c..}$$

Muon specific interaction \rightarrow contributing to muon g-2 at one-loop

$$\Delta a_{\mu} = \frac{|f_{\mu}|^2}{16\pi^2} \int_0^1 dx \frac{m_{\mu}^2 x^2 (1-x)}{x(x-1)m_{\mu}^2 + xm_E^2 + (1-x)m_{\chi}^2} \,.$$

We do not have other LFV from the interaction

3.Phenomenology

Dark matter physics and muon g-2

Dominant DM annihilation cross section

$$(\sigma v_{\rm rel}) \approx \frac{|f_{\mu}|^4}{240\pi} \frac{m_{\chi}^6}{(m_{\chi}^2 + m_E^2)^4} v_{\rm rel}^4 \equiv d_{\rm eff} v_{\rm rel}^4, \qquad m_{\mu} << m_{\chi} \lesssim m_E$$

Relic density:

$$\Delta a_{\mu} = \frac{(6.57 \times 10^{-3})}{16\pi^2} \times \left(\frac{0.1197}{\Omega h^2}\right)^{\frac{1}{2}} \times \frac{(m_{\chi}^2 + m_E^2)^2}{m_{\chi}^3 \text{ GeV}} \int_0^1 dx \frac{m_{\mu}^2 x^2 (1-x)}{x(x-1)m_{\mu}^2 + xm_E^2 + (1-x)m_{\chi}^2}$$

3.Phenomenology

Dark matter physics and muon g-2

Blue: within 1 σ , Green: 1 σ to 2 σ , Yellow: 2 σ to 3 σ of $\Delta a_{\mu} = (25.1 \pm 5.9) \times 10^{-10}$

- * We can obtain muon g-2 within 2σ when relic density is satisfied
- to region can be obtained when relic density is smaller than observed
 and the state of the state

Summary and discussion

Applying modular flavor A₄ symmetry to dark sector model

- A model construction
 - Neutrino mass model with dark sector
 - > DM interaction is muon specific due to $U(1)_{H}$ and A4 symmetry
 - Mass matrices are ristricted from symmetry
- Phenomenology
 - We obtain parameter region realizing both quark and lepton masses
 - Muon specific DM interaction realizing muon g-2

Appendix

Kinetic term and quadratic term of scalar fields

$$\sum_{I} \frac{|\partial_{\mu} \phi^{(I)}|^2}{(-i\tau + i\bar{\tau})^{k_I}} , \quad \sum_{I} \frac{|\phi^{(I)}|^2}{(-i\tau + i\bar{\tau})^{k_I}}$$

Invariant under

$$\tau \longrightarrow \gamma \tau = \frac{a\tau + b}{c\tau + d}$$
 $\phi^{(I)} \longrightarrow (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \phi^{(I)},$

Factor of denominator will be absorbed by field redefinition after modular symmetry breaking (fixing modulus)

Mixing obtained from PMNS matrix

$$\sin^2 \theta_{13} = |(U_{\rm PMNS})_{13}|^2, \quad \sin^2 \theta_{23} = \frac{|(U_{\rm PMNS})_{23}|^2}{1 - |(U_{\rm PMNS})_{13}|^2}, \quad \sin^2 \theta_{12} = \frac{|(U_{\rm PMNS})_{12}|^2}{1 - |(U_{\rm PMNS})_{13}|^2}.$$
(II.15)

$$J_{CP} = \operatorname{Im}[U_{e1}U_{\mu 2}U_{e2}^{*}U_{\mu 1}^{*}] = s_{23}c_{23}s_{12}c_{12}s_{13}c_{13}^{2}\sin\delta_{CP},$$

$$I_{1} = \operatorname{Im}[U_{e1}^{*}U_{e2}] = c_{12}s_{12}c_{13}^{2}\sin\left(\frac{\alpha_{21}}{2}\right), \ I_{2} = \operatorname{Im}[U_{e1}^{*}U_{e3}] = c_{12}s_{13}c_{13}\sin\left(\frac{\alpha_{31}}{2} - \delta_{CP}\right).$$
(II.17)

 $\langle m_{ee} \rangle = |m_1 \cos^2 \theta_{12} \cos^2 \theta_{13} + m_2 \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i\alpha_{21}} + m_3 \sin^2 \theta_{13} e^{i(\alpha_{31} - 2\delta_{CP})}|,$