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1. Introduction to chiral oscillation

The dynamics of neutrinos in vacuum is described by Dirac equation

(i) —m)y =0 (1)
It’s worth noting that chiral eigenstates wouldn’t evolve independently,
iV =Yg, idbr=1r . (2)

which indicates that there’s the oscillation between chiral eigenstates.

To show it explicitly, firstly we can derive the Hamiltonian from eq.(1)
H=~%-p+my' =p-a+mf=(p )y’ +mf. (3)

And the evolution operator U (t), defined by ¢ (t) = U(t)y(0), would be

(p- %)+ mp

U(t) = e "' = cos(Et) = sin( B't) (4)
From Hamiltonian we can deduce the energy eigenstate
wh_#(\/E—h-puh>6ip.X wh—L<\/E+h.pu}L>eip-x (5>
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where h = £1, u” are the helicity eigenstates with p-ou® = (h-p)u”. Then
the evolution of energy eigenstate would be ¥"(t,x) = U(t)y" = e 1,

While in the SM neutrinos are produced by W and/or Z interactions. At
production ¢t = 0 point, they are left-handed and normalized, ie.

h\ .
o= (1) erx. vh= () e )

With the evolution, ¥ () would oscillate to 1% because of the m3 in U(t),

Yt = Uy = (cos(Et) | i(pEE) sin(Et)) Yl — z% sin(Et)zb% (7

S0 the oscillation probability would be

2 2

P(vp = v)) = Wi =1 %SiHQ(Et) . P} = vh) = WYL = sin®(Bt) . (8)

2. Dirac neutrino oscillation in matter

When active flavor neutrinos propagate in matter, the equation of motion is
affected by effective potentials due to the interactions with the medium. We
can write the effective Lagrangian for an active Dirac neutrino in matter as

L =i — mpp — py 520 (9)
where p = v2Gp (Neége — %Nn) Then the equation of motion would be
(i —m — pyZ) ¥ =0 (10)
So the Hamiltonian would be
H=(p-Z)y’ +mb+p72, (11)

with energy eigenvalues given by Fy = £+ Ej, and Ey = £ — E),, where

E, = \/ m? (h P — 5)2, and the corresponding eigenstates

1 VEL—(h-p—25)u" _ 1 VEL,+(h-p=5u"
o= (Veriy—hw) v (CUh s ng ) 02

Then with the expression of H, we can calculate the U(t) in matter,

hep—P . .
U(t) = eilit it cos(Ept) +1 z,h 2 sin( Fpt) —igr sm(Epht)
— i sin( Eyt) cos(Ept) — i~ 3 sin( Eyt)
(13)
So the oscillation probability would be
2 2
P} — of) = [oliU | = 1 - s (Eut) . POk — ) = [T = Tpsind(Ba) . (14

h h

We can see different helicity with the different oscillation probability.

3. Majorana neutrino oscillation in matter

Though the Lagrangian would be same as Dirac case in eq.(9), 1 and ¢*
VL

wouldn’t be independent because ¢ = ( ) So the equation of motion

vy
would be modified as

(i@ —m — o2 + P 52) ¥ = (i —m+ pyys) =0 (15)
The corresponding Hamiltonian would be
H=(p -2y +mp—pys, (16)

whose eigenvalues would be Ej, = + \/ m2+ (h-p— p)°. Then we can cal-

culate the oscillation probability in analogy to Dirac case,

h h ht 1k m’ h hyc ht 2 m?
P} - vf) = [wlfo @] =1- i), P = (v)) = U] = s (Bi) - (17
where we can see that compared to the Dirac case the p contribution would

be twice.
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4. (General mass term neutrino oscillation in vacuum and matter

The most general the effective Lagrangian for these Seesaw neutrinos in matter will be given by

. = L, . My, MT) <VL> ) o it Jr VL
L =vyidvr + NpidNe — 5 { (v Ne) 1/ 1/ +he | — (op Ng) | Ok 7R

=iy — % (ViMup + hee) — Yy,
(18)
where the mass matrix M can be diagonalized as VIMV = M = diag{my, ms, ms, My, Mo, M5} =
dia,g{]\/f\l, M, nt with ¢ = V", Then the expression of Lagrangian would be

£ = (07— M) — gy, (19
and the equation of motion is
(iff = M)g™ — Jhy 2™ + (J) 2™ = 0. (20)
Here 9™ = 7" 4+ (¢7")¢ and Ji = V1]V So the Hamiltonian H for the general case is
H = (p-X)ys+ MB + "y, 252 — yo(J#) 0 (21)

To explicit the chiral oscillation, let us consider the simple case of just one light and one heavy neutrinos
with seesaw mass matrix M = diag{m, M}, set ji p; = 0 for the case of having just SM interactions
cos@ e"sinf

Canf el eos (9) Then we can show the

in matter and parameterize the mixing matrix as V' = (

expression of Hamiltonian explicitly,

E(14cos2)—p-o m Le' sin 20 0
7 m pP-o — 5(14 cos20) 0 —Le " sin 20 (22)

e "sin 20 0 £(1—cos20) —p-o M

0 —£e sin 26 M p-o —5(1—cos26)
The eigenvalues would be Ey 5 = F/ A1 — Ao, B34 = F/ A + Ay, where
2
2_ M2 _95(h-p_L 2 M2V 02 (2 M2 . 9
A — M2 M24+-2p2—2(h-p) p+p? A — \/((m M?2) cos 20—2p(h-p 2)) +((m M?)"+p?(m?+M?—2mM cos 2n))sm 20 (23)
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Then after calculation of evolution operator U(t) = e~ we can derive the oscillation probability. But

the general expression is so complicated, so let’s see some special case first.

Setting p = 0, oscillation probabilities in vacuum would be

2 120 2

P(v} — v}) = (cos® 0 cos(Ept) + sin® @ cos(EMt))2 +p’ (co; sin(E,t) + - sin(EMt)>
m M

in” 20 in(E,t)  sin(Eyt)\’
P} — (N})9) = == | (cos(Ent) — cos(Eyt))” + p? (55 = 55 . ))
) " . : (24)
M M
P} — (V1)) = (Emm)2 cos® @ sin?(E,t) + anEM sin? 26 cos 21 sin(E,,t) sin(Eyt) + Ex 2 sin® @ sin?( Eyt)
in” 26 2 2mM M?
P} — N} = Sm4 ((;)Q sin®(E,,t) — E:EM cos 2y sin(Ep,t) sin( Eyt) + o SiHQ(EMt)> |

We can see that though the Majorana phase would give the contribution to oscillation probability, it
would dis appear after taking the time average.

Besides, in ultrarelativistic limit, ie. p > M > m > p, after taking the time average, the oscillation
probability would be

P! — () (m? — M?)? ((m2 cos* 0 + M?sin*0)  p(4m? cos® @ — 4M?sin® 6 + mM cos 2n cos 26 sin” 20) N 20%(2m? cos* O + 2M?sin* 6 + mM cos 21 sin’ 29))
vy ve) ) = )

S 7 p(m? — %) n? AP .
P! = NB) (m? — M?)?sin®20 [ m? + M?  2p(m?+ M? — 2mM cos 2n) cos 20 N 4p* (m? + M?* — 2mM cos2n)
% = - '
p N DA 7 P = 17) TR

The probabilities for the other two oscillation modes are

1 220,
P(Vzﬁyh):§+0082 ff

(M?*—m?) cos 29+2p(h-p—g)
where cos 20,4 = 7 .

. o sin® 204
— P = ()), Pk — (Nl = 25

— P(V} — N} . (26)

h=-1,6=8.54°,n =g, m=10"3eV, M2 —m? =2.51 x 10~3eV?.

101
Io.g 10°

S0 we can see that after taking the time average
the Majorana phase still have the contribution

to oscillation probability in matter. By the way, — _x»- " _ o
. . . 0 3 : 3.
it’s consistent with MSW effect when we just 3 237 B
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consider the leading order in eq.(26). 1o [0'6 .
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It’s obvious that the chiral oscillation would be AV e ey

significant in non-relativistic limit, such as cos-
mic backeground neutrinos. To explicit this fact,

v > vf V. = Ny
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we draw the time average oscillation probability. o -~ o
S B N -0.15 >
. . 9D 102 3 9 102 ;
We can see that in low energy region, the MSW <« 13 B o103
effect would be suppressed, and the matter effect 10+ I‘” 10- IO-OS
would occur in chiral oscillation. 105 107 102 107 107 100 10 05 10 10 102 100 100 100
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5. Conclusion

1. Once we introduce the neutrino mass, there is oscillation between left and right chiral states.
2. Chiral oscillation probability in matter would depend on the helicity:.

3. Considering the matter effect, there’s a chiral oscillation resonant density.

4.The chiral oscillation matter effect in Majorana case would twice as Dirac case.

5. The Majorana phase would influence the chiral oscillation probability. But atter taking time average,
only considering the matter effect, can Majorana phase contributes to oscillation probability.



