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1. Introduction to chiral oscillation

The dynamics of neutrinos in vacuum is described by Dirac equation

(i/∂ −m)ψ = 0 . (1)

It’s worth noting that chiral eigenstates wouldn’t evolve independently,

i/∂ψL = ψR , i/∂ψR = ψL . (2)

which indicates that there’s the oscillation between chiral eigenstates.

To show it explicitly, firstly we can derive the Hamiltonian from eq.(1)

H = γ0γ · p +mγ0 = p ·α +mβ = (p ·Σ)γ5 +mβ . (3)

And the evolution operator U(t), defined by ψ(t) = U(t)ψ(0), would be

U(t) = e−iHt = cos(Et)− i
(p ·Σ)γ5 +mβ

E
sin(Et) (4)

From Hamiltonian we can deduce the energy eigenstate

ψh1 =
1√
2E

(√
E − h · p uh√
E + h · p uh

)
eip·x , ψh2 =

1√
2E

( √
E + h · p uh

−
√
E − h · p uh

)
eip·x , (5)

where h = ±1, uh are the helicity eigenstates with p ·σuh = (h · p)uh. Then
the evolution of energy eigenstate would be ψh(t,x) = U(t)ψh = ψhe−iEt.

While in the SM neutrinos are produced by W and/or Z interactions. At
production t = 0 point, they are left-handed and normalized, ie.

ψhL =

(
uh

0

)
eip·x , ψhR =

(
0
uh

)
eip·x . (6)

With the evolution, ψhL(t) would oscillate to ψhR because of the mβ in U(t),

ψhL(t) = U(t)ψhL =

(
cos(Et) + i

(p ·Σ)

E
sin(Et)

)
ψhL− i

m

E
sin(Et)ψhR . (7)

So the oscillation probability would be

P (νhL → νhL) = |ψh†L ψ
h
L(t)|2 = 1− m2

E2
sin2(Et) , P (νhL → νhR) = |ψh†R ψ

h
L(t)|2 =

m2

E2
sin2(Et) . (8)

2. Dirac neutrino oscillation in matter

When active flavor neutrinos propagate in matter, the equation of motion is
affected by effective potentials due to the interactions with the medium. We
can write the effective Lagrangian for an active Dirac neutrino in matter as

L = ψ̄(i/∂ −m)ψ − ρψ̄γ0
1−γ5
2 ψ , (9)

where ρ =
√
2GF

(
Neδαe − 1

2Nn

)
. Then the equation of motion would be(

i/∂ −m− ργ0
1−γ5
2

)
ψ = 0 . (10)

So the Hamiltonian would be

H = (p ·Σ)γ5 +mβ + ρ1−γ52 , (11)

with energy eigenvalues given by E1 = ρ
2 + Eh and E2 = ρ

2 − Eh, where

Eh =
√
m2 +

(
h · p− ρ

2

)2
, and the corresponding eigenstates

ψ1 =
1√
2Eh

(√
Eh − (h · p− ρ

2) u
h√

Eh + (h · p− ρ
2) u

h

)
, ψ2 =

1√
2Eh

( √
Eh + (h · p− ρ

2) u
h

−
√
Eh − (h · p− ρ

2) u
h

)
. (12)

Then with the expression of H , we can calculate the U(t) in matter,

U(t) = e−iHt = e−
i
2ρt

cos(Eht) + i
h·p−ρ

2

Eh
sin(Eht) −imEh

sin(Eht)

−imEh
sin(Eht) cos(Eht)− i

h·p−ρ
2

Eh
sin(Eht)

 .

(13)
So the oscillation probability would be

P (νhL → νhL) =
∣∣∣ψh†L U(t)ψhL∣∣∣2 = 1− m2

E2
h

sin2(Eht) , P (νhL → νhR) =
∣∣∣ψh†R U(t)ψhL∣∣∣2 = m2

E2
h

sin2(Eht) . (14)

We can see different helicity with the different oscillation probability.

3. Majorana neutrino oscillation in matter

Though the Lagrangian would be same as Dirac case in eq.(9), ψ and ψ∗

wouldn’t be independent because ψ =

(
νL
νcL

)
. So the equation of motion

would be modified as(
i/∂ −m− ργ0

1−γ5
2 + ρ∗γ0

1+γ5
2

)
ψ =

(
i/∂ −m + ργ0γ5

)
ψ = 0 . (15)

The corresponding Hamiltonian would be

H = (p ·Σ)γ5 +mβ − ργ5 , (16)

whose eigenvalues would be Eh = ±
√
m2 + (h · p− ρ)2. Then we can cal-

culate the oscillation probability in analogy to Dirac case,

P (νhL → νhL) =
∣∣∣ψh†L U(t)ψhL∣∣∣2 = 1− m2

E2
h

sin2(Eht) , P (νhL → (νhL)
c) =

∣∣∣ψh†R U(t)ψhL∣∣∣2 = m2

E2
h

sin2(Eht) . (17)

where we can see that compared to the Dirac case the ρ contribution would
be twice.

4. General mass term neutrino oscillation in vacuum and matter

The most general the effective Lagrangian for these Seesaw neutrinos in matter will be given by

L =ν̄Li/∂νL + N̄Ri/∂NR − 1

2

((
ν̄cL N̄R

)(ML M
T
D

MD MR

)(
νL
N c
R

)
+ h.c.

)
−
(
ν̄L N̄

c
R

)( jµL jµRL
jµ†RL jR

)
γµ

(
νL
N c
R

)
=ψ̄Li/∂ψL −

1

2

(
ψ̄cLMψL + h.c.

)
− ψ̄LJ

µγµψL ,

(18)

where the mass matrix M can be diagonalized as V TMV = M̂ = diag{m1,m2,m3,M1,M2,M3} =

diag{M̂l, M̂h} with ψL = V ψmL . Then the expression of Lagrangian would be

L =
1

2

(
ψ̄m(i/∂ − M̂)ψm

)
− ψ̄mJ̃µγµ

1−γ5
2 ψm , (19)

and the equation of motion is

(i/∂ − M̂)ψm − J̃µγµ
1−γ5
2 ψm + (J̃µ)∗γµ

1+γ5
2 ψm = 0 . (20)

Here ψm = ψmL + (ψmL )
c and J̃µ = V †JµV . So the Hamiltonian H for the general case is

H = (p ·Σ)γ5 + M̂β + γ0J̃
µγµ

1−γ5
2 − γ0(J̃

µ)∗γµ
1+γ5
2 . (21)

To explicit the chiral oscillation, let us consider the simple case of just one light and one heavy neutrinos
with seesaw mass matrix M̂ = diag{m,M}, set jµR,RL = 0 for the case of having just SM interactions

in matter and parameterize the mixing matrix as V =

(
cos θ eiη sin θ

− sin θ eiη cos θ

)
. Then we can show the

expression of Hamiltonian explicitly,

H =


ρ
2(1 + cos 2θ)− p · σ m ρ

2e
iη sin 2θ 0

m p · σ − ρ
2(1 + cos 2θ) 0 −ρ

2e
−iη sin 2θ

ρ
2e

−iη sin 2θ 0 ρ
2(1− cos 2θ)− p · σ M

0 −ρ
2e
iη sin 2θ M p · σ − ρ

2(1− cos 2θ)

 . (22)

The eigenvalues would be E1,2 = ∓
√
A1 − A2, E3,4 = ∓

√
A1 + A2, where

A1 =
m2+M 2+2p2−2(h·p)ρ+ρ2

2 , A2 =

√(
(m2−M 2) cos 2θ−2ρ(h·p−ρ2)

)2
+((m2−M 2)2+ρ2(m2+M 2−2mM cos 2η)) sin2 2θ

2 . (23)

Then after calculation of evolution operator U(t) = e−iHt, we can derive the oscillation probability. But
the general expression is so complicated, so let’s see some special case first.

Setting ρ = 0, oscillation probabilities in vacuum would be

P (νhL → νhL) =
(
cos2 θ cos(Emt) + sin2 θ cos(EMt)

)2
+ p2

(
cos2 θ

Em
sin(Emt) +

sin2 θ

EM
sin(EMt)

)2

P (νhL → (Nh
R)

c) =
sin2 2θ

4

(
(cos(Emt)− cos(EMt))

2 + p2
(
sin(Emt)

Em
− sin(EMt)

EM

)2
)

P (νhL → (νhL)
c) =

m2

(Em)2
cos4 θ sin2(Emt) +

mM

2EmEM
sin2 2θ cos 2η sin(Emt) sin(EMt) +

M 2

(EM)2
sin4 θ sin2(EMt)

P (νhL → Nh
R) =

sin2 2θ

4

(
m2

(Em)2
sin2(Emt)−

2mM

EmEM
cos 2η sin(Emt) sin(EMt) +

M 2

(EM)2
sin2(EMt)

)
,

(24)

We can see that though the Majorana phase would give the contribution to oscillation probability, it
would dis appear after taking the time average.

Besides, in ultrarelativistic limit, ie. p ≫ M > m ≫ ρ, after taking the time average, the oscillation
probability would be

P (νhL → (νhL)
c) =

(m2 −M 2)2

8A2
2

(
(m2 cos4 θ +M 2 sin4 θ)

p2
− ρ(4m2 cos6 θ − 4M 2 sin6 θ +mM cos 2η cos 2θ sin2 2θ)

p(m2 −M 2)
+

2ρ2(2m2 cos4 θ + 2M 2 sin4 θ +mM cos 2η sin2 2θ)

(m2 −M 2)2

)
,

P (νhL → Nh
R) =

(m2 −M 2)2 sin2 2θ

32A2
2

(
m2 +M 2

p2
− 2ρ(m2 +M 2 − 2mM cos 2η) cos 2θ

p(m2 −M 2)
+

4ρ2
(
m2 +M 2 − 2mM cos 2η

)
(m2 −M 2)2

)
.

(25)

The probabilities for the other two oscillation modes are

P (νhL → νhL) =
1

2
+
cos2 2θeff

2
− P (νhL → (νhL)

c) , P (νhL → (Nh
R)

c) =
sin2 2θeff

2
− P (νhL → Nh

R) . (26)

where cos 2θeff =
(M 2−m2) cos 2θ+2ρ(h·p−ρ2)

2A2
.

So we can see that after taking the time average
the Majorana phase still have the contribution
to oscillation probability in matter. By the way,
it’s consistent with MSW effect when we just
consider the leading order in eq.(26).

It’s obvious that the chiral oscillation would be
significant in non-relativistic limit, such as cos-
mic background neutrinos. To explicit this fact,
we draw the time average oscillation probability.

We can see that in low energy region, the MSW
effect would be suppressed, and the matter effect
would occur in chiral oscillation.

5. Conclusion

1. Once we introduce the neutrino mass, there is oscillation between left and right chiral states.

2. Chiral oscillation probability in matter would depend on the helicity.

3. Considering the matter effect, there’s a chiral oscillation resonant density.

4. The chiral oscillation matter effect in Majorana case would twice as Dirac case.

5. The Majorana phase would influence the chiral oscillation probability. But after taking time average,
only considering the matter effect, can Majorana phase contributes to oscillation probability.


