The MSW Matter Potential at the One-loop Level in the Standard Model

Jihong Huang*, Shun Zhou
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Based on Work in Preparation

Neutrino MSW Matter Potential

When neutrinos propagate in matter, the coherent forward scattering off the background particles leads to the Mikheyev-Smirnov-Wolfenstein (MSW) matter potential and could modify neutrino flavor conversions remarkably [1].

$\mathcal{V}_{\mathrm{CC}}=\sqrt{2} G_{\mu} N_{e} c_{\mathrm{V}, \mathrm{CC}}^{e}$

$\mathcal{V}_{\mathrm{NC}}=\sqrt{2} G_{\mu} N_{f} c_{\mathrm{V}, \mathrm{NC}}^{f}$

At the one-loop level, the NC potential depends on the charged-lepton masses. In the Standard Model (SM), the ratio of the flavor-dependent part to the tree-level CC potential is [2]

$$
\epsilon_{\mu \tau} \approx-\frac{3 \alpha}{2 \pi \sin ^{2} \theta_{\mathrm{w}}} \frac{m_{\tau}^{2}}{m_{W}^{2}}\left[\ln \left(\frac{m_{\tau}^{2}}{m_{W}^{2}}\right)+\frac{5}{6}\right] \approx 10^{-5}
$$

- Previous works only concentrate on the flavor-dependent corrections.
- The one-loop corrections to the CC potential have not been studied thus far.

A complete one-loop calculation of the MSW potential is necessary.

Potential
CC One-loop
Potential

Complete One-loop MSW Potential

Active-sterile Neutrino Oscillation

High-precision
Measurement

Strategy for One-loop Calculations

1
Perform the one-loop renormalization of the SM in the on-shell scheme.

Compute the one-loop neutrino scattering amplitudes in ordinary matter.

Finite scattering amplitudes

Extract corrections to the vector-type couplings of CC and NC interactions.

The latest values of all physical parameters

One-loop Scattering Amplitudes

Neutral-current

With equal number densities of protons and neutrons, the relative correction to NC potential is
$\frac{\Delta c_{\mathrm{V}, \mathrm{NC}}}{c_{\mathrm{V}, \mathrm{NC}}} \approx 0.062+0.02 k^{-1} \approx 8 \%$.
(1t) is the same for all-flavor neutrinos.
The flavor-dependent difference is two orders of magnitude smaller.

Charged-current
The relative correction to CC potential turns out to be 6%.

This correction is only for electronneutrinos and could affect neutrino flavor conversions.
It can be probed in the next-generation long-baseline accelerator experiments, such as DUNE and T2HK.

Sensitivity on DUNE

The difference between oscillation probabilities in two cases of neutrino mass ordering could be resolved at DUNE [3]. So the distinction at the sub-percent level induced by quantum corrections is promising to be detected.

Summary

> A complete one-loop calculation of the MSW matter potential is presented in the SM.
$>$ The relative size of the correction to CC potential of electron-neutrinos is 6%, while that to NC potential of all-flavor neutrinos can be as large as 8%.
$>$ Such corrections could affect the neutrino oscillations and be examined in the next-generation experiments.

References

[1] L. Wolfenstein, Phys.Rev.D 17 (1978) 2369-2374 L. Wolfenstein, Phys.Rev.D 20 (1979) 2634-2635
S.P. Mikheyev and A.Y. Smirnov, Sov.J.Nucl.Phys. 42 (1985) 913-917
[2] F.J. Botella, C.S. Lim and W.J. Marciano, Phys.Rev.D 35 (1987) 896
A. Mirizzi, S. Pozzorini, G.G. Raffelt and P.D. Serpico, JHEP 10 (2009) 020 [3] DUNE Collaboration, Conceptual Design Report (Vol. 2), 1512.06148

