Invariant Theory and Leptonic CP Violation

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Bingrong Yu (Email: yubr@ihep.ac.cn)

Based on JHEP 09 (2021) 053, JHEP 10 (2021) 017, JHEP 08 (2022) 017, Phys.Rev.D 106 (2022) 5, L051701 In collaboration with Yilin Wang and Shun Zhou

Motivation

Physical observables can be calculated from the coupling parameters in Lagrangian using QFT

 $\mathcal{L}\left(c_{1}, c_{2}, \ldots\right) \xrightarrow{\text{QFT}} \mathcal{O}\left(c_{1}, c_{2}, \ldots\right) \xrightarrow{\text{basis trans.}} \mathcal{O}\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots\right)$

Couplings are usually not invariant under basis transformations (gauge trans., flavor trans., etc.), while physical observables are expected to be independent of the choice of basis.

Can we construct quantities from couplings directly that are invariant under basis transformations? $\mathcal{I}(c_1, c_2, \ldots) \xrightarrow[c_i \neq c']{\text{basis trans.}} \mathcal{I}(c'_1, c'_2, \ldots) = \mathcal{I}(c_1, c_2, \ldots)$

Invariants can be used to describe physical observables in a basis-independent way. How to construct invariants systematically, and establish their connections to physical observables?

Leptonic Invariant Ring with Majorana Neutrinos

Relevant Lagrangian in the leptonic sector

$$\mathcal{L}_{\text{lepton}} = -\overline{l_{\text{L}}} M_l l_{\text{R}} - \frac{1}{2} \overline{\nu_{\text{L}}} M_\nu \nu_{\text{L}}^c + \frac{g}{\sqrt{2}} \overline{l_{\text{L}}} \gamma^\mu \nu_{\text{L}} W_\mu^- + \text{h.c.}$$

Building blocks to construct invariants: charged-lepton mass matrix M_l (adjoint rep. of U(3) group) and Majorana neutrino mass matrix M_{ν} (rank-two symmetric tensor rep. of U(3) group)

Calculating the HS using Molien-Weyl formula: $\mathscr{H}_{\text{lepton}}\left(q\right) = \frac{1 + q^{6} + 2q^{8} + 4q^{10} + 8q^{12} + 7q^{14} + 9q^{16} + 10q^{18} + 9q^{20} + 7q^{22} + 8q^{24} + 4q^{26} + 2q^{28} + q^{30} + q^{36}}{(1 - q^{2})^{2}(1 - q^{4})^{3}(1 - q^{6})^{4}(1 - q^{8})^{2}(1 - q^{10})}$ $\frac{(1 - q^{2})^{2}(1 - q^{4})^{3}(1 - q^{6})^{4}(1 - q^{8})^{2}(1 - q^{10})}{(1 - q^{10})^{4}(1 - q^{10})^{4}(1 - q^{10})^{4}(1 - q^{10})^{4}(1 - q^{10})^{4}(1 - q^{10})}$

Invariant Theory and Hilbert Series

Hilbert's fourteenth problem (David Hilbert, 1900)

Let G be a subgroup of the full linear group of the polynomial ring in indeterminates x_1, \ldots, x_n over a field k, and let v be the set of elements of $k[x_1, ..., x_n]$ which are invariant under G. Is o finitely generated?

Invariants form a *polynomial ring*, which can be generated from a *finite* number of generators generators: $\{\mathcal{I}_1, \mathcal{I}_2, ..., \mathcal{I}_n\} \xrightarrow[\text{decomposition}]{\text{polynomial}} \forall \text{invariant } \mathcal{I}, \quad \mathcal{I} = \mathcal{P}\left(\mathcal{I}_1, \mathcal{I}_2, ..., \mathcal{I}_n\right)$

Hilbert Series (HS): generating function of the invariant ring

Denominator of HS: encoding information about physical parameters of the model Numerator of HS: encoding information about generators and syzygies of the invariant ring

How to calculate the HS: Molien-Weyl formula (Molien, 1897; Weyl, 1926; Benvenuti et al., 2007; Hanany et al., 2011)

 $\operatorname{PE}(z_{1},...z_{r_{0}};q) \equiv \exp\left[\sum_{k=1}^{\infty}\sum_{i=1}^{n}\frac{\chi_{R_{i}}(z_{1}^{k},...,z_{r_{0}}^{k})q^{k}}{k}\right] \qquad \mathscr{H}(q) = \int [\mathrm{d}\mu]_{G}\operatorname{PE}(z_{1},...,z_{r_{0}};q)$

 $PE^{-1}\left[\mathscr{H}_{lepton}\left(q\right)\right] = 2q^2 + 3q^4 + 5q^6 + 4q^8 + 5q^{10} + 7q^{12} + 5q^{14} + 2q^{16} - \mathcal{O}\left(q^{18}\right) \qquad \begin{array}{l} \textbf{3 charged-lepton masses, 3 neutrino masses, 3 flavor mixing angles, 3 CP-violating phases} \\ \textbf{3 flavor mixing$

Constructing all generators of the invariant ring in the leptonic sector:

avor invariants	(q_l, q_{ν})	$q_l + q_{\nu}$	CP parity	flavor invariants
$_{1} \equiv \operatorname{Tr}\left(H_{l}\right)$	(2,0)	2	+	$I_{18}\equiv {\rm Tr}(\{H_l,H_\nu^2\}G_{l\nu})$
$_2 \equiv \operatorname{Tr}\left(H_{\nu}\right)$	(0,2)	2	+	$I_{19} \equiv \operatorname{Tr}\left(\left[H_l, H_{\nu}^2\right]G_{l\nu}\right)$
$_{3} \equiv \operatorname{Tr}\left(H_{l}^{2}\right)$	(4,0)	4	+	$I_{20} \equiv \text{Tr}\left(\{H_l^2, H_\nu\} G_{l\nu}^{(2)}\right)$
$_{4}\equiv\mathrm{Tr}\left(H_{l}H_{\nu}\right)$	(2,2)	4	+	$I_{21} \equiv \text{Tr}\left([H_l^2, H_{\nu}]G_{l\nu}^{(2)}\right)$
$_{5} \equiv \operatorname{Tr}\left(H_{\nu}^{2}\right)$	(0, 4)	4	+	$I_{22} \equiv \operatorname{Tr}\left(H_l^2 H_{\nu} H_l G_{l\nu}\right) - \operatorname{Tr}\left(H_l^2 G_{l\nu} H_l H_{\nu} H_l H_l G_{l\nu}\right) - \operatorname{Tr}\left(H_l^2 G_{l\nu} H_l H_l H_l H_l H_l H_l H_l H_l H_l H_l$
$_{5} \equiv \operatorname{Tr}\left(H_{l}^{3}\right)$	(6, 0)	6	+	$I_{23} \equiv \text{Tr}\left(\{H_l, H_{\nu}^2\} G_{l\nu}^{(2)}\right)$
$_7 \equiv \operatorname{Tr}\left(H_l^2 H_{\nu}\right)$	(4,2)	6	+	$I_{\text{ext}} \equiv \text{Tr}\left(\left[H_{1}, H^{2}\right] G_{1}^{(2)}\right)$
$_{8} \equiv \operatorname{Tr}\left(H_{l}G_{l\nu}\right)$	(4, 2)	6	+	$\frac{I_{24} - Ir}{I_{24} - Ir} \left(\frac{I_{24} - Ir}{V_{24} - V_{24} - V_{24}} \right) - Ir \left(\frac{H^2 H}{H} \right)$
$_{P} \equiv \operatorname{Tr}\left(H_{l}H_{\nu}^{2}\right)$	(2,4)	6	+	$\frac{I_{25} = \Pi(\Pi_{l} \Pi_{\nu} \Pi_{l} \Pi_{\nu}) - \Pi(\Pi_{l} \Pi_{\nu} \Pi_{\nu})}{I_{22} = \Pi(\Pi_{l} \Pi_{\nu} \Pi_{l} \Pi_{\nu}) - \Pi(\Pi_{l} \Pi_{\nu} \Pi_{\nu})}$
$_{10} \equiv \mathrm{Tr}\left(H_{\nu}^{3}\right)$	(0, 6)	6	+	$\frac{I_{26} - Ir(H_{l}H_{\nu} \otimes I_{\nu}H_{\nu}) - Ir(H_{l}H_{\nu} \otimes I_{\nu}H_{\nu})}{I - Ir(H_{2}H_{\nu} + Ir(H_{\nu})) - Ir(H_{2}H_{\nu})}$
$_{11} \equiv \mathrm{Tr}\left(H_l^2 G_{l\nu}\right)$	(6,2)	8	+	$\frac{I_{27} = \Pi \left(\Pi_l \Pi_{\nu} \Pi_l G_{l\nu}\right) - \Pi \left(\Pi_l G_l\right)}{I_{12} - \Pi \left(\Pi_l G_l\right) - \Pi \left(\Pi_l G_l\right)}$
$_{12} \equiv \operatorname{Tr}\left(\left\{H_{l}, H_{\nu}\right\}G_{l\nu}\right)$	(4, 4)	8	+	$\frac{I_{28} \equiv \operatorname{Ir}\left(\{H_{\tilde{l}}^{2}, H_{\nu}\}G_{\tilde{l}\nu}\right)}{I_{12} = \operatorname{Tr}\left([H_{\tilde{l}}^{2}, H_{\nu}]G_{\tilde{l}\nu}^{2}\right)}$
$_{13} \equiv \operatorname{Tr}\left(\left[H_{l}, H_{\nu}\right] G_{l\nu}\right)$	(4, 4)	8		$\frac{I_{29} = 1\Gamma([H_{\bar{l}}, H_{\nu}]G_{\bar{l}\nu})}{I_{\bar{l}} - Tr(H^2H^2HC)} - Tr(H^2C)$
$_{14} \equiv \mathrm{Tr}\left(H_l^2 H_\nu^2\right)$	(4, 4)	8	+	$\frac{I_{30} \equiv \Pi (\Pi_l \Pi_{\nu} \Pi_l G_{l\nu}) - \Pi (\Pi_l G_{l\nu})}{I_{21} \equiv \Pi (H_l^2 H_{\nu}^2 G_{l\nu} H_{\nu}) - \Pi (H_l^2 H_{\nu} G_{l\nu})}$
$_{15} \equiv \operatorname{Tr}\left(H_l^2 G_{l\nu}^{(2)}\right)$	(8,2)	10	+	$\frac{I_{31} = (-l_l - \nu - l_l - \nu)}{I_{32} \equiv \text{Tr} \left(H_l^2 G_{l\nu} H_l G_{l\nu}^{(2)}\right) - \text{Tr} \left(H_l^2 G_{l\nu} H_l G_{l\nu}^{(2)}\right)}$
$16 \equiv \operatorname{Tr}\left(\left\{H_l^2, H_\nu\right\} G_{l\nu}\right)$	(6, 4)	10	+	$\overline{I_{33}} \equiv \operatorname{Tr}\left(H_l^2 H_{\nu} H_l G_{l\nu}^2\right) - \operatorname{Tr}\left(H_l^2 G_{l\nu}^2 H_{\nu}^2 H_{\nu}^$
$_{17}\equiv {\rm Tr}\left(\left[H_{l}^{2},H_{\nu }\right] G_{l\nu }\right)$	(6, 4)	10	—	$I_{34} \equiv \text{Tr} \left(H_l^2 H_{\nu}^2 G_{l\nu}^2 \right) - \text{Tr} \left(H_l^2 G_{l\nu}^2 H_{\nu}^2 \right)$

	(q_l, q_{ν})	$q_l + q_{\nu}$	CP parity	
	(4, 6)	10	+	··· · · · · · · · · · · · · · · · · ·
	(4, 6)	10	_	$H_l \equiv M_l M_l'$
	(8, 4)	12	+	$H_{\mu} \equiv M_{\mu} M_{\mu}^{\dagger}$
	(8, 4)	12	—	$C = M II * M^{\dagger}$
${}_{l}^{2}G_{l\nu}H_{l}H_{\nu})$	(8, 4)	12	_	$G_{l\nu} \equiv M_{\nu}H_{l}M_{\nu}$
	(6, 6)	12	+	$G_{l\nu}^{(2)} \equiv M_{\nu} \left(H_{l}^{*} \right)^{2} M_{\nu}^{\dagger}$
	(6, 6)	12	_	
$(H_{\nu}H_{l}H_{\nu}^{2})$	(6, 6)	12	_	
$\left[H_{\nu}G_{l\nu}H_{\nu}^{2}\right)$	(4, 8)	12	—	
$\left(H_l^2 G_{l\nu}^{(2)} H_l H_\nu\right)$	(10, 4)	14	_	21 gonoratora
	(8, 6)	14	+	54 generators
	(8, 6)	14		19 CP-even
$G_l^2 G_{l\nu} H_l H_{\nu}^2$	(8, 6)	14	_	15 CP-odd
$I_l^2 H_\nu G_{l\nu} H_\nu^2)$	(6, 8)	14	_	15 01 -000
$\left(H_l^2 G_{l\nu}^{(2)} H_l G_{l\nu}\right)$	(12, 4)	16	_	
${}_l^2 G_{l\nu}^2 H_l H_{\nu})$	(10, 6)	16	_	
$G_{l\nu}^2 H_{\nu}^2$	(8, 8)	16	_	

12 algebraically-independent invariants (primary invariants)

 $\{I_1, I_2, I_3, I_4, I_5, I_7, I_9, I_{10}, I_{14}, I_{13}, I_{19}, I_{26}\}$ CP-even
CP-odd
extract

Y. Wang, **BY**, S. Zhou, JHEP 09 (2021) 053

All physical parameters in the leptonic sector can be extracted from primary invariants

 $\{m_1, m_2, m_3, m_e, m_\mu, m_\tau, \theta_{12}, \theta_{13}, \theta_{23}, \delta, \rho, \sigma\}$

Conditions for CP conservation in the Leptonic Sector

Phases in the PMNS matrix describe CP violation in the leptonic sector:

Example: HS in the flavor space of the Standard Model (SM) (Jenkins & Manohar, 2009)

 $\mathscr{H}_{\text{quark}}\left(q\right) = \frac{1 + q^{12}}{\left(1 - q^2\right)^2 \left(1 - q^4\right)^3 \left(1 - q^6\right)^4 \left(1 - q^8\right)}$

10 physical parameters: 6 quark masses, 3 mixing angles, 1 CP-violating phase

 $PE^{-1}\left[\mathscr{H}_{quark}\left(q\right)\right] = 2q^{2} + 3q^{4} + 4q^{6} + q^{8} + q^{12} - q^{24}$

11 generators in the invariant ring, 1 syzygy among the generators

Generators of the invariant ring in the SM $(H_u \equiv M_u M_u^{\dagger}, H_d \equiv M_d M_d^{\dagger})$

 $I_{42} \equiv \mathrm{Tr}\left(H_{\mathrm{u}}^2 H_{\mathrm{d}}\right)$ $I_{20} \equiv \operatorname{Tr}(H_{\mathrm{u}})$ $I_{02} \equiv \operatorname{Tr}(H_{\rm d})$ $I_{24} \equiv \mathrm{Tr}\left(H_{\mathrm{u}}H_{\mathrm{d}}^{2}\right)$ $I_{40} \equiv \operatorname{Tr}\left(H_{\mathrm{u}}^2\right)$ $I_{06} \equiv \operatorname{Tr}\left(H_{\mathrm{d}}^3\right)$ $I_{22} \equiv \mathrm{Tr}\left(H_{\mathrm{u}}H_{\mathrm{d}}\right)$ $I_{44} \equiv \operatorname{Tr}\left(H_{\mathrm{u}}^2 H_{\mathrm{d}}^2\right)$ $I_{04} \equiv \operatorname{Tr}\left(H_{\mathrm{d}}^2\right)$ $I_{66} \equiv \text{Im Tr} \left(H_{\text{u}}^2 H_{\text{d}}^2 H_{\text{u}} H_{\text{d}} \right)$ $I_{60} \equiv \mathrm{Tr}\left(H_{\mathrm{u}}^{3}\right)$ $= \text{Det} [H_{\rm u}, H_{\rm d}] / (2i)$

10 CP-even, 1 CP-odd

□ All physical parameters in the quark sector can be extracted from invariants

• Only source of CP violation in the SM (Jarlskog) $\propto I_{66}$

D Syzygy relation $I_{66}^2 = P(I_{20}, I_{02}, ..., I_{44})$ Calculating magnitude of CP violation from **CP-conserving quantities**

Applications of Invariant Theory in Particle Physics

 \geq Counting gauge-invariant chiral operators in supersymmetric gauge field theories (Pouliot, 1999;

Romelsberger, 2006; Benvenuti et al., 2007)

 $U_{\rm PMNS} = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & +c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ +s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix} \cdot \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

CP conservation \Leftrightarrow All phases take trivial values $\Leftrightarrow \delta = 0$ or π and $\rho, \sigma = 0$ or $\pi/2$

Can one construct the necessary and sufficient conditions for CP conservation without diagonalizing the lepton mass matrices? Yes!

 $\mathcal{I}_1 \equiv \operatorname{Im} \operatorname{Tr} \left(H_l^2 H_{\nu}^2 H_l H_{\nu} \right) = 0$ $\mathcal{I}_2 \equiv \operatorname{Im} \, \operatorname{Tr} \left(H_l H_{\nu} G_{l\nu} \right) = 0$ $\mathcal{I}_3 \equiv \text{Im Tr} \left(H_l H_{\nu}^2 G_{l\nu} \right) = 0$

BY, S. Zhou, PLB 800 (2020) 135085

 $\mathcal{I}_{1} = \Delta_{\mu e} \Delta_{\tau \mu} \Delta_{\tau e} \Delta_{21} \Delta_{31} \Delta_{32} s_{12} c_{12} s_{23} c_{23} s_{13} c_{13}^{2} \sin \delta = 0$ $\mathcal{I}_{2} = f_{1} \sin 2\rho + f_{2} \sin 2\sigma + f_{3} \sin (2\rho - 2\sigma) = 0$ $\mathcal{I}_{3} = h_{1} \sin 2\rho + h_{2} \sin 2\sigma + h_{3} \sin (2\rho - 2\sigma) = 0$

These three CP-odd invariants are exactly

 I_{25} , I_{13} , and I_{19} in the generating set above !

 $\Delta_{\alpha\beta} \equiv m_{\alpha}^2 - m_{\beta}^2$ $\Delta_{ij} \equiv m_i^2 - m_j^2$

 f_i and h_i are only functions of masses and flavor mixing angles

Invariants and Leptogenesis

Leptogenesis provides an elegant explanation for cosmological matter-antimatter asymmetry

CP violation in leptogenesis comes from phases in Yukawa couplings, i.e., Y_{ν}

$$\epsilon_{1} \equiv \frac{\sum_{\alpha} \left[\Gamma \left(N_{1} \to \ell_{\alpha} + H \right) - \Gamma \left(N_{1} \to \overline{\ell_{\alpha}} + \overline{H} \right) \right]}{\sum_{\alpha} \left[\Gamma \left(N_{1} \to \ell_{\alpha} + H \right) + \Gamma \left(N_{1} \to \overline{\ell_{\alpha}} + \overline{H} \right) \right]} = -\frac{3}{16\pi \left(Y_{\nu}^{\dagger} Y_{\nu} \right)_{11}} \sum_{j \neq 1} \left(\frac{M_{1}}{M_{j}} \right) \operatorname{Im} \left[\left(Y_{\nu}^{\dagger} Y_{\nu} \right)_{1j}^{2} \right] \qquad M_{1} \ll M_{j}$$

CP violation in leptogenesis can be well described by CP-odd invariants

- > Study flavor structure and CP violation in quark and leptonic sector (Jenkins & Manohar, 2009)
- > Counting high-dimensional operators in EFTs (Lehman et al., 2015; Henning et al., 2017)
- > Calculating high-loop Feynman integrals (Larsen & Zhang, 2015)
- \geq Construction of scalar potential in multi-Higgs-doublet models (Trautner, 2018)

Summary

D Physical observables are independent of the choice of basis. It is helpful and more natural to describe physical observables in terms of invariants.

□ Invariant theory provides a systematic way to construct the whole invariant ring, once the symmetries in the model are given.

□ Invariants are useful to describe CP violation. They also establish the connections between observables at high and low energies, in a basis- and parametrization-independent way.