

Features Analysis of Particle Tracks and Sensitivity 6. **Estimation on PandaX-III Experiment**

Tao Li (on behalf of the PandaX-III Collaboration) Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University

Neutrinoless double beta decay

 \succ Half lifetime of $0v\beta\beta$ on experiment:

Ettore Majorana

- > High-pressure gaseous time projection chamber: **3** % FWHM $@Q_{\beta\beta} = 2.458$ MeV;
 - Active volume: 1.6 m in diameter and 1.2 m high;
 - \Box 137 kg of enriched xenon gas(1% TMA) in 10 bar;
 - \Box Readout: 52 modules of 20 cm \times 20 cm (3 mm strips).

Email: litao73@mail.sysu.edu.cn

$$T_{1/2}^{0
u} = ln2 \cdot rac{N_A \epsilon a}{W} \sqrt{rac{M \cdot t}{m{b} \cdot m{d}E}}$$

- b: the background index;
- dE: the detector energy resolution;

Features analysis of particle tracks in PandaX-III

 \Box Event vertex z_0) is not directly available due to the loss of the scintillation light signal.

□ Track features can be extracted more effectively for signal identification.

I. Signal identification with Kalman filter: Suppress the background events in ROI;

PandaX-III TPC

Micromegas

II. Vertex reconstruction with CNN²

Distortion of energy spectrum (electron attachment effect due to gas purity);

U Events near the readout plane and cathode can't be identified (Radon degassing).

 $\succ \text{ Electron lifetime : } \tau_e = (\eta_a \nu_d)^{-1}; E_c = E_r * e^{-z_0/\tau_e} = \mathbf{F}(E_r; z_0, \tau_e)$

$rightarrow z_0$ is revealed in the degree of trajectory dispersion. $\sigma_{L,T}^2 = \sigma_{0L,T}^2 + 2 \cdot D_{L,T} \cdot \boldsymbol{z_0}$

Pearson correlation maps of all the parameters. > Sensitivity estimation

Comparation	Overall efficiency	background counts in 5 yr	significance	Sensitivity (90% C.L.)
This work	34.7%	2.4	8.8	2.7 × 10 ²⁶ yr
Design target	35.0%	25.3	2.8	$9.8 \times 10^{25} \text{ yr}$
Work before	23.2%	7.6	3.3	$1.1 \times 10^{26} \text{ yr}$

Table: The $0\nu\beta\beta$ half-life sensitivity estimation of PandaX-III based on MC data.

- □ The estimation of the background level is 152 CPY. After the BDT cut, the background rate is 0.48 CPY.
- Assuming 1 t Xenon and (3 mm, 1%), the background rate is 0.11 CPY, pushing the search towards background-free regime.

[1] Tao Li et al. JHEP06(2021)106. [2] Tao Li et al. JHEP05(2023)200.

> Performance on the simulated dataset

 $\sigma(\Delta z)$: prediction error of VGGZ0net; $\hat{l}_e, \hat{\tau}_e$: electron lifetime estimation;

 l_e : Setting value of electron lifetime;

l_e (cm)	$\sigma(\Delta z)$ (cm)	\hat{l}_e (cm)	$\hat{ au}_e$ (ms)	Corrected energy resolution at $Q_{\beta\beta}$ (%) FWHM
Infinity	11	-	-	3.3
2000	11	2015 ± 55	10.83 ± 0.30	3.4
1800	11	1815 ± 53	9.76 ± 0.28	3.5
1600	11	1614 ± 42	8.68 ± 0.23	3.6
1400	11	1408 ± 33	7.57 ± 0.18	3.7
1200	11	1217 ± 30	6.54 ± 0.16	4.0
1000	11	1008 ± 25	5.42 ± 0.13	4.2
800	11	809 ± 20	4.35 ± 0.11	4.6

Table: The performance of vertex reconstruction and energy correction based on VGGZ0net in different electron lifetime scenarios. The corrected energy resolution at $Q_{\beta\beta}$ is presented.

The 29th International Workshop on Weak Interactions and Neutrinos, 2-8, July, 2023