

Introduction of the Service Evaluation Beamline in SILF, IASF

彭子菱1, 孟凡强1, 2, 崔艺涛1, 司锐1, 3, 孙冬柏1

1粒子院同步辐射光源经理部,线站总体 2中山大学中法核工程与技术学院 3中山大学材料学院

PENG Ziling¹, MENG Fanqiang^{1, 2}, CUI Yitao¹, SI Rui^{1, 3}, SUN Dongbai¹

¹Institute of Advanced Science Facilities, Shenzhen ²Institut Franco-chinois de l'Energie Nucléaire, Sun Yat-sen University ³ School of Materials, Sun Yat-sen University

Abstract

Beamline Service Evaluation is a designed high energy X-ray beamline of SILF for imaging, diffraction and scattering, which will operate at energies of 30-100 keV. This beamline is designed to be suitable for experiments, which utilize: high-energy X-rays, time-resolved in situ measurements, monochromatic or polychromatic ("white beam") X-rays imaging and diffraction techniques, including their combination during one experiment. This beamline is designed not only for academic research but also for industrial oriented experiments.

About IASF

Institute of Advanced Science Facilities, Shenzhen (IASF) is a multi-disciplinary research institute responsible for Shenzhen's large-scale science facilities' whole life cycle planning, construction, operation, and maintenance.

Beamline optics

At the primary phase, There are two active infrastructure projects are being funded, and they are in the stage of designing and construction; one is the Shenzhen Innovation Light-source Facility (SILF), and the other one is the Shenzhen Superconducting Soft-X-ray Free Electron Laser (S³FEL).

SILF is a diffraction-limited synchrotron radiation facility that has a fourthgeneration diffraction-limited storage ring with an electron energy of 3 GeV at a low emittance of 50-150 pm·rad, and it provides photons with a broad range of energy from 4 meV to 160 keV.

S³FEL is a high repetition rate soft-X-ray super-conducting free-electron laser facility that consists of a 2.5 GeV CW superconducting linear accelerator and four initial undulator lines, which aims at generating X-Rays between 40 eV and 1 keV at rates up to 1MHz.

Sample position **Total efficiency** 1.2% 13% 26% 31%

Experimental hutches

EH2

Cible tests: small size samples

Main techniques: PDF、XRD、SAXS

Beam condition: Monochromatic: 74.8keV Focused size: 0.25×0.1 mm²

Cible tests: Long-term in-situ experiments such as corrosion and creep for medium size samples.

Test modes:

Several test samples will be fastened onto different rigs of the sample platform. The specific rig will be automatically moved to the beam position, according to the test program.

Main techniques: ED-XRD, XRD

Beam condition: 70-100keV; large beam size (104×6.8) mm²)

Beamline characteristics

Beamline layout **Double Bent Laue** High-White Wiggler monochromator Wall precision beam **BPM EH2** EH3 BPM Filter Side Bounce Vertical monochromator focusing EH1 mirror 29m 29.5m 30.5m 43.5m 46.5m Techniques Characteristics

	Values	
Energy range (keV)	30~100	
Energy Resolution (ΔΕ/Ε)	5×10 ⁻³ @70keV@EH2	
Photon flux (phs/s)	5 × 10 ¹² @74.8keV@EH1 2 × 10 ¹² @70keV@EH2 1 × 10 ¹² @70keV@EH3	
beam size (H × V)	≤0.25×0.1 mm² @EH1 ≥120×7.8 mm² @EH3	

Experiment modes

	Beamtime estimation	Applied experiments	Samples
EH1 100 %	 PDF – 80 % 3DXRD – 20 % 	 PDF Residual stress mesurement	 simple sample environment single-test low-quality powder, small size sample
EH2 20 %	• XRD- 20 %	High through-put experimentCorrosionCreep	multiple long-term measurementsmedium size sample
EH3 80 %	 Xray imaging- 30 % CT - 30 % ED XRD- 20 % 	 fatigue crack growth and failure defect detection in materials and components residual stress distribution 	 large in-situ equipment Customized rig large size sample

Main techniques: ED XRD、 XRD、 X-ray Imaging、 CT

Beam condition: 70-100keV; large beam size (120×7.8) mm²)

Load range: ~5000N; Load measurement resolution: 1N; Maximum displacement stroke: 130mm; Displacement resolution: 0.1µm; temperature range: $\sim 1000^{\circ}$ C; Temperature control accuracy: $\pm 2^{\circ}$ C