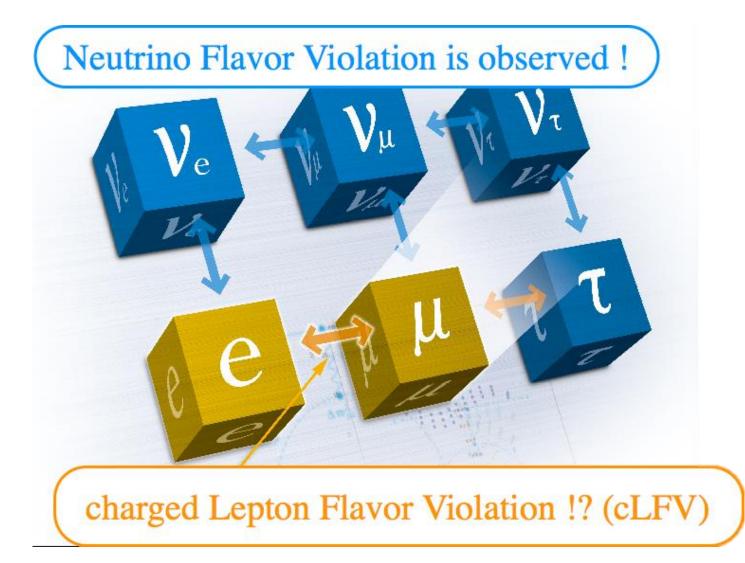
Charged Lepton Flavor Violation Experiments

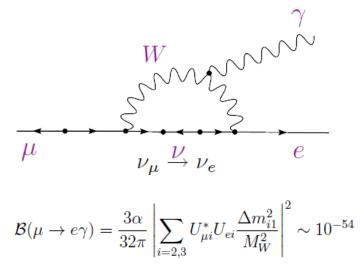
Chen WU RCNP, Osaka University


29th WIN Conference. Sun Yat-sen University, Zhuhai. 3-8, July, 2023.

Outline

- Physics motivation
- Experimental status
 - μ sector
 - μ decays/captures
 - Transitions with μ in the final state
 - au sector
 - τ decays
 - Transitions with au in the final state
- Summary

* My experience is limited to μ sector. My review on τ sector can't be very comprehensive. In case of any bias/mistake, my apologies!


Physics Motivation

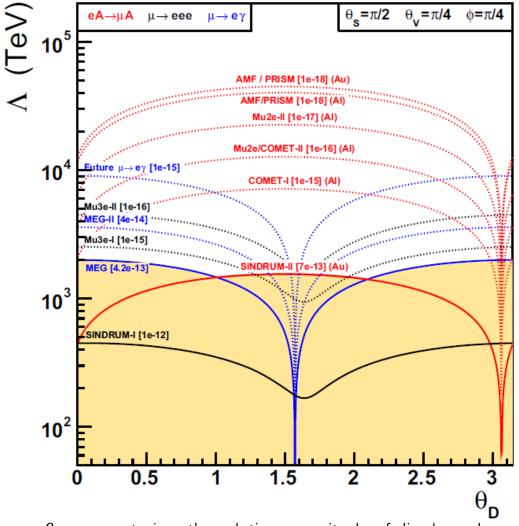
Charged Lepton Flavor Violation (CLFV)

- Since 1940s, μ started to be considered as a heavy version of electron. The quest of CLFV started from searching for $\mu \rightarrow e\gamma$.
 - The null result led to the concept of flavor conservation.
- Neutrino oscillations demonstrates that neutrinos are massive, and lepton flavor conservation is violated (PMNS matrix).
- However, CLFV is still practically forbidden in SM+ m_{ν} due to GIM
 - 40 orders of magnitude lower than current limit: Clean field to search for new physics!

Highly suppressed in SM+ m_{ν} by GIM due to the smallness of m_{ν}

S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340

Charged Lepton Flavor Violation (CLFV)

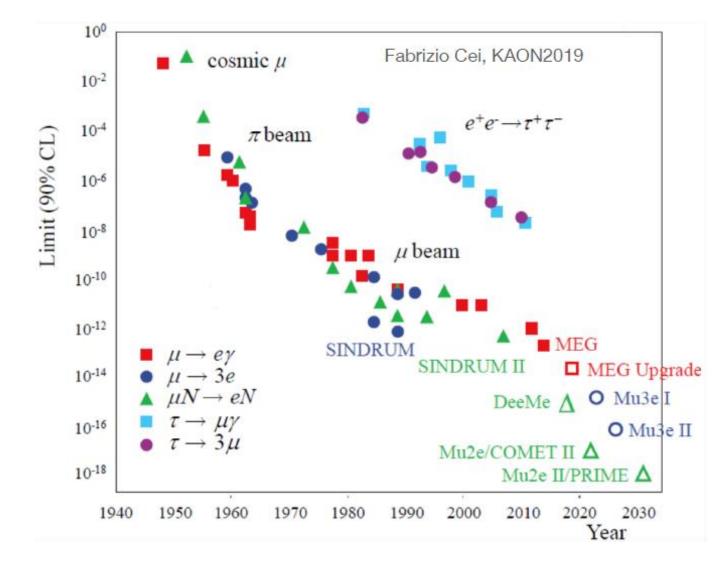

- Neutrino mass requires new physics: scale is unknown.
- There is no fundamental law to prevent CLFV.
 - Naturally exists in new physics
- CLFV is closely related to important questions:
 - neutrino mass origin, baryogenesis, flavor origin…
- Hints from anomalies: g-2, LFU

CLFV Widely predicted in NP models

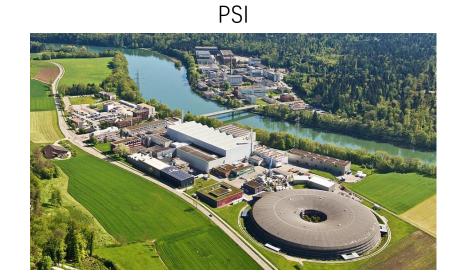
Model independent approach: EFT

- Extend SM in effective field theory with higher dimension operators: $\mathcal{L} = \mathcal{L}_{SM} + \sum_{n \ge 1} \frac{C_{ij}^{4+n}}{\Lambda^n} \mathcal{O}^{4+n}$
- CLFV can be introduced from dim-6: $Br \sim \frac{1}{\Lambda^4}$
- Λ can reach $\mathcal{O}(10^3 \sim 10^4)$ TeV!
 - Good complementation to direct searches for new physics.

 θ_D parameterizes the relative magnitude of dipole and $_6$ four-fermion coefficients


Searching for CLFV in different channels

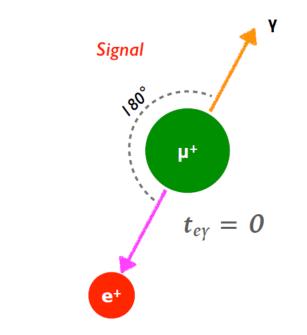
• μ sector

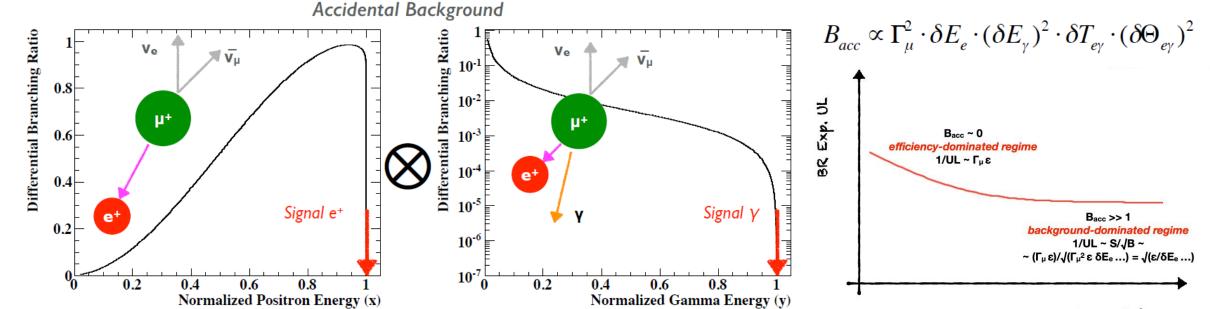

- μ decays/captures
- Transitions with μ in the final state
- au sector
 - au decays
 - Transitions with au in the final state
- Searching μ and τ sectors together can give us a whole picture of the flavor structure in new physics.
- Searching with different channels can give us a better understanding of the characteristics of new physics:
 - Ratios between two channels are different under different new physics.

Complementary to each other. We need to be thorough.

History of CLFV: most stringent channels

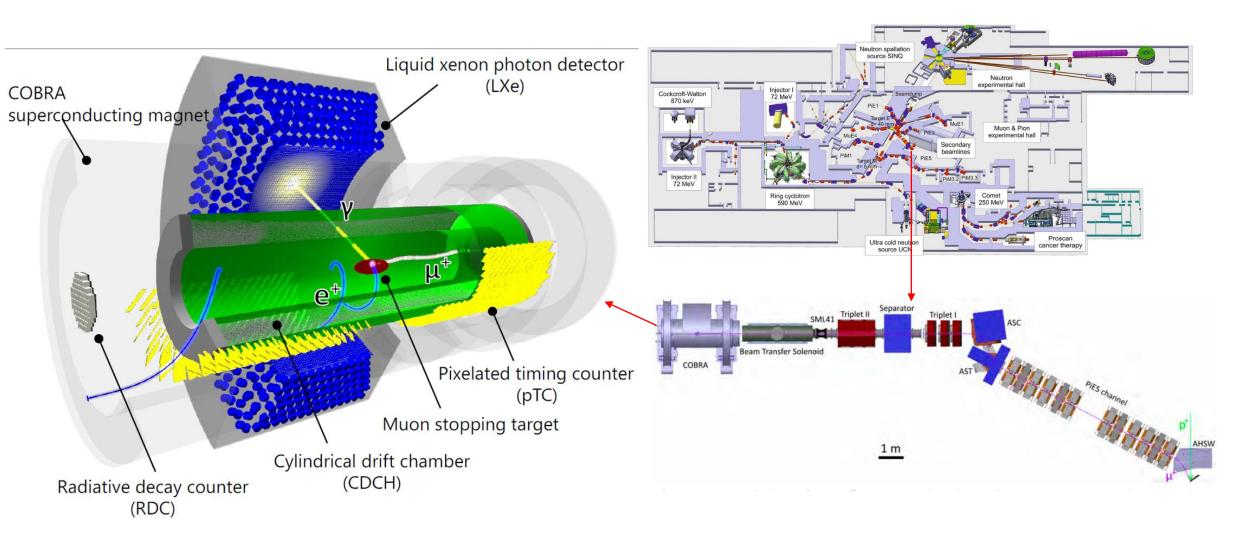
FermiLab


J-PARC


Searching CLFV in μ sector

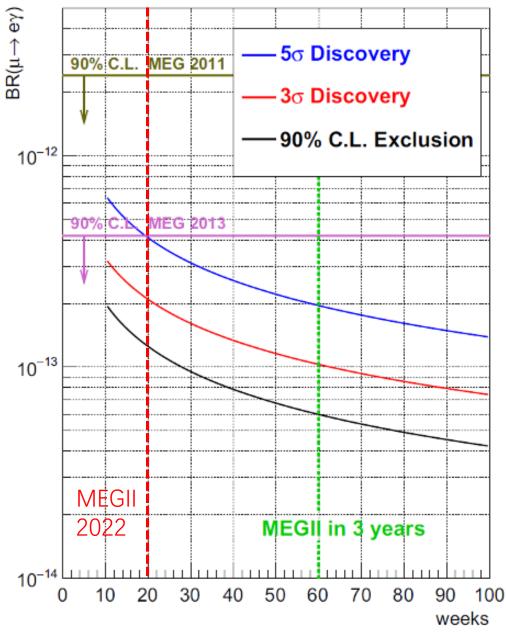
- μ is particularly convenient for CLFV searches
 - Relatively long lifetime: gather and deliver before decay.
 - Great accessibility: thanks to the improvement in proton accelerators, which was mostly promoted by various application and the neutrino physics quests.
- The search for CLFV in μ decay/capture processes offers the most stringent limits.
- Transitions with μ in the final state can not compete with the sensitivity achieved with μ beam.
 - But still needed for understanding the new physics: model dependency.

$\mu \to e \gamma$


- Starting from positive muons stopped in target.
- Signal is back-to-back electron positron pair.
- Background dominated by accidental events:
 - DC beam preferred. Detector resolution limit.
- Can search for $\mu \rightarrow eX(\gamma)$ in the meantime

Cecilia Voena, Muon4Future workshop

 $\mu \rightarrow e\gamma$: MEG-II @ PSI


Link to the MEG II design paper

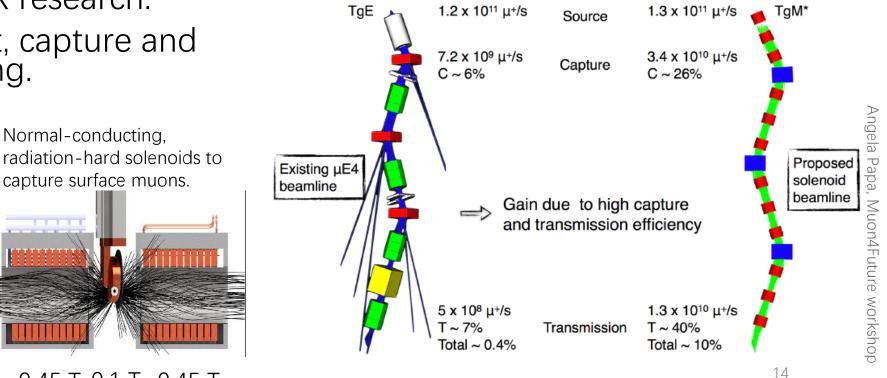
 $\mu \rightarrow e\gamma$: MEG-II VS MEG

- MEG: operated 2008~2013, 90% CL upper limit set to 4.7×10^{-13}
- MEG II: 2021~2026, aims at 4×10^{-14}
 - detector resolution and efficiency x2
 - Beam intensity x2: $3 \times 10^7/s \rightarrow 5 \times 10^7/s$. Can achieved: $10^8/s$.

$$B_{acc} \propto \Gamma_{\mu}^2 \cdot \delta E_e \cdot (\delta E_{\gamma})^2 \cdot \delta T_{e\gamma} \cdot (\delta \Theta_{e\gamma})^2$$

	MEG	MEG II (design)	MEG II (Meas.)
ΔE_e [keV]	380	130	90
$\Delta heta_e$ / $\Delta \phi_e$ [mrad]	9/9	7.0/5.5	8/7
<i>e</i> ≁ Eff. [%]	40	70	65
ΔE_{γ} [%] (deep/shallow)	1.7/2.4	1.0/1.1	1.7/2.0
Δpos_{γ} [mm]	5	2.4	2.5
γ Eff. [%]	60	70	60
∆t _{eγ} [ps]	120	85	80

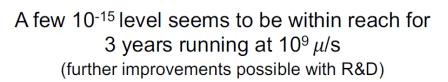
Yuki Fujii, Muon4Future workshop 13

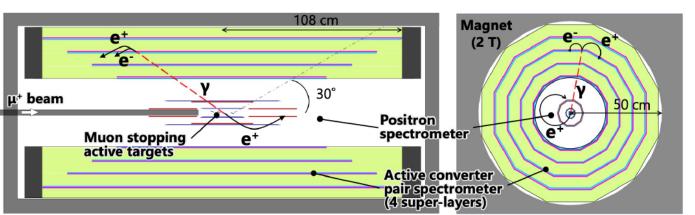

New muon beamline design in PSI: HiMB

- Aim: $10^{10}\mu/s$, surface muon, DC beam.
- Schedule: long shutdown 2027~2028
- Serves for particle physics ($\mu \rightarrow e\gamma$, $\mu \rightarrow ee$, muEDM) and muSR research.
- Optimizations on target, capture and transmission are ongoing.

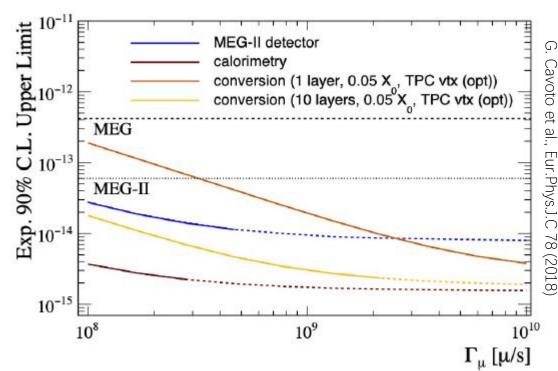
Existing To

Shielding around TgH removed for better visib Beamline MUH3

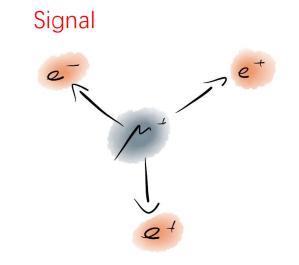

Proposed solenoidal beam line to increase the transmission efficiency

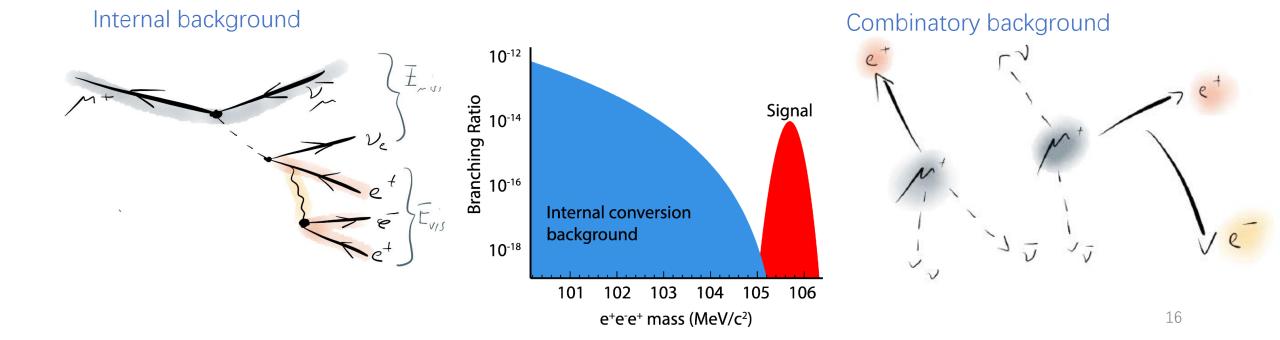


0.45 T 0.1 T 0.45 T

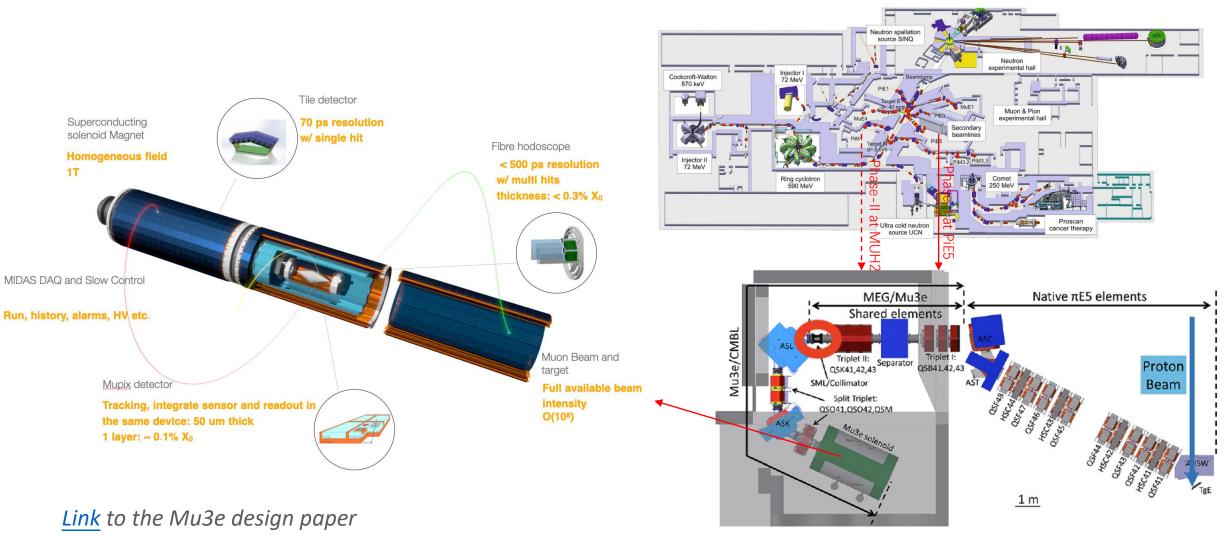

$\mu \rightarrow e\gamma$: next generation experiment

- HiMB Physics Case Workshop started from April 2021.
 - Positron detection: gaseous of silicon
 - Photon detection: calorimetry or conversion layer.

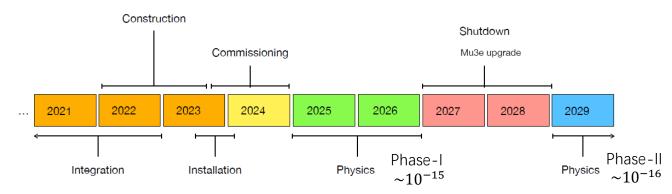

The plan with active multiple layer conversion layers. Silicon detector for positron.

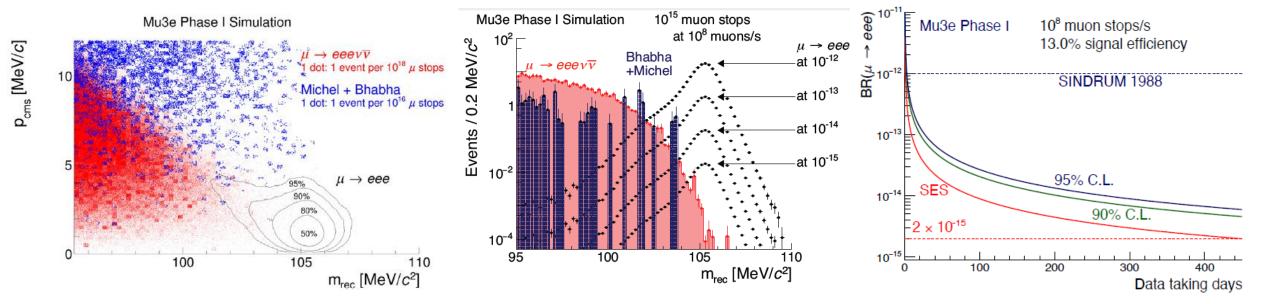


15


$\mu \rightarrow eee$

- Starting from positive muons stopped in the target.
- Signal: 3 electrons from the same vertex.
- Background: internal and combinatorial events:
 - **DC beam** preferred. Detector resolution limit.
- Can search for $\mu \rightarrow eX(\gamma)$ in the meantime

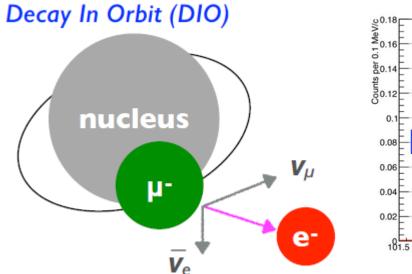

$\mu \rightarrow eee$: Mu3e @ PSI

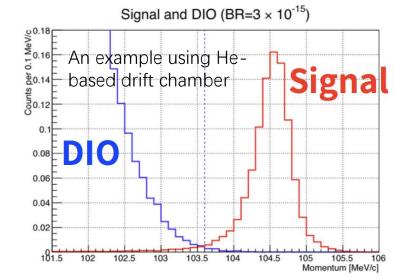


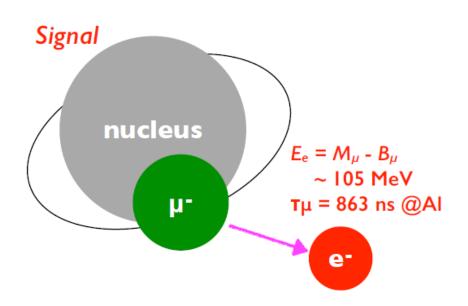
17

$\mu \rightarrow eee$: Mu3e @ PSI

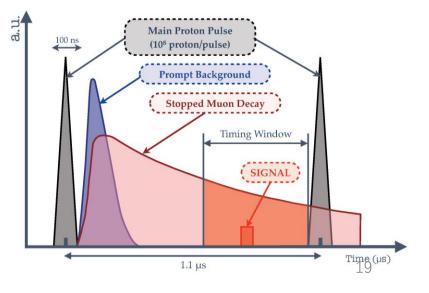
- Phase-I aims at $\sim 10^{-15}$ sensitivity.
- Phase-II aims at $\sim 10^{-16}$ sensitivity.
 - Will use muons from HiMB: $10^9 \mu/s$
 - Detector needs upgrade.

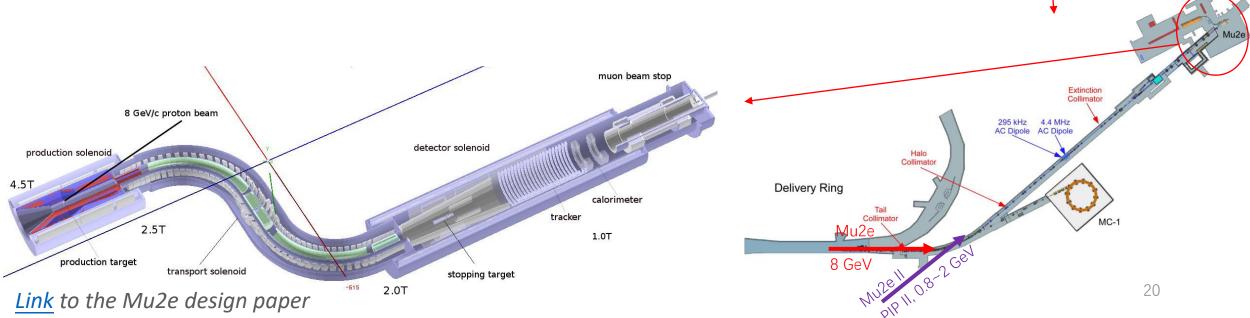

Technical design of the Phase I Mu3e Experiment


18


$\mu N \rightarrow eN$

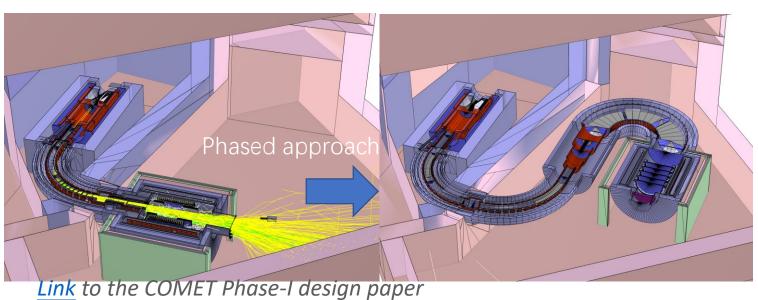
- Starting from negative muons stopped in the target.
- Signal: 1 mono-energetic electron.
- Background: intrinsic, beam related, cosmic ray
 - Pulsed beam preferred. Excellent extinction factor required.
 - Cosmic ray veto needed.
- Can search for $\mu^- N \to e^+ N$, $\mu \to e X$ in the meantime.

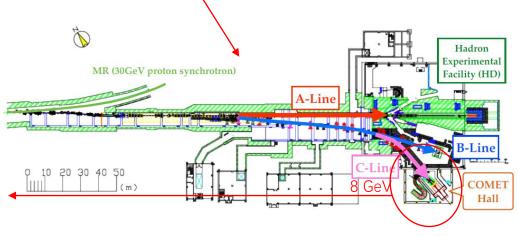

Intrinsic background: DIO. Can be well separated with current detector.


Using pulsed beam and delayed window to avoid beam related background.

$\mu N \rightarrow eN$: Mu2e @ FermiLab

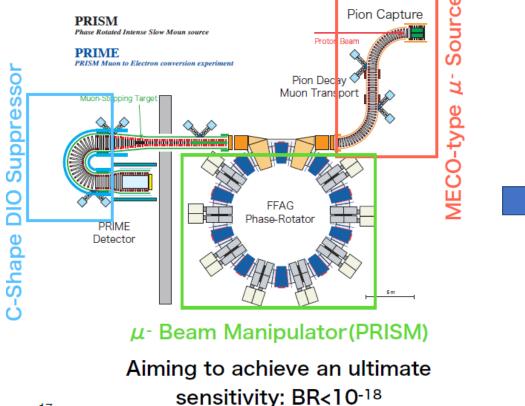
- Mu2e aims at 90% CL upper limit 8×10^{-17} with 8 kW proton beam.
 - Under construction. Data taking from 2025~2026.
 - 1/2y before shutdown (run 1), 4y after (run 2).
- Mu2e II aims at 8×10^{-18} with 100 kW proton beam.
 - planed after PIP-II upgrade. Somewhere after 2030.
 - Needs 5 years data taking.
 - Infrastructure will be reused. Target/Detectors need upgrade.

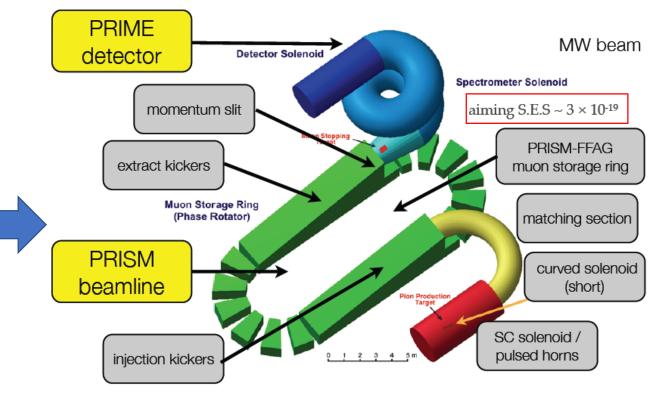




$\mu N \rightarrow eN$: COMET @ J-PARC

- Phase-I aims at 90% CL upper limit 7×10^{-15} with 3.2 kW proton beam
 - Under construction. Data taking from 2024~2025.
 - 150 days data taking.
- Phase-II aims at 4.6×10^{-17} with 56 kW proton beam
 - Planned 3 years after Phase-I. Needs 1 year data taking.
 - May aim at 7×10^{-18} in case of schedule delay.
 - Infrastructure will be reused. Target/Detectors need upgrade. SC beamline needs extension.

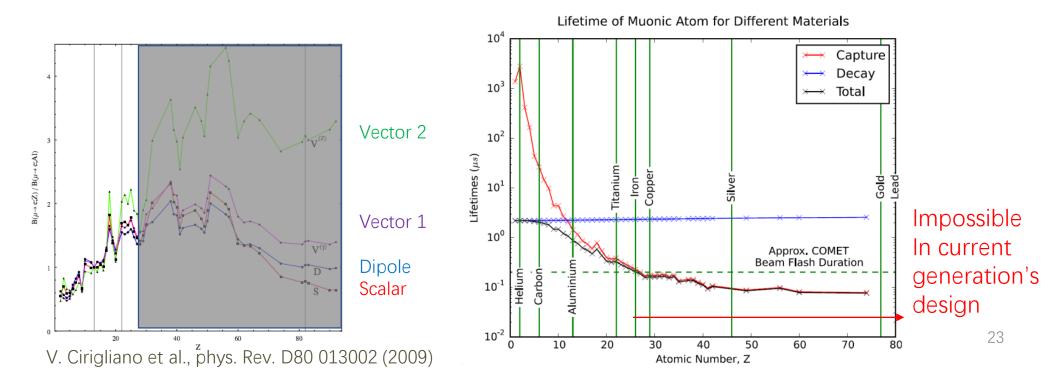




$\mu N \rightarrow eN$: Next generation

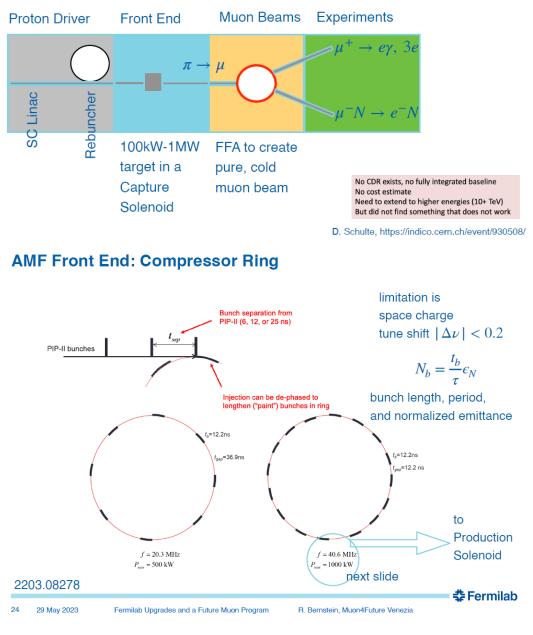
The original design before COMET Started from 2005.

The PRISM group is still updating the design to achieve an ultimate search for $\mu N \rightarrow eN$

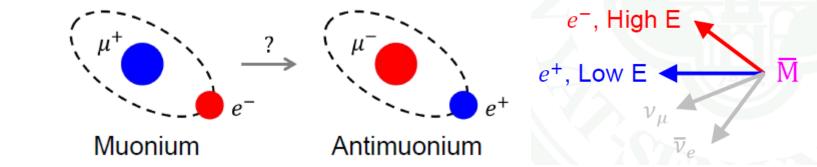


In synergy with muon collider: target, capture, and storage ring. Might be the most intense muon beam before muon collider.

17


$\mu N \rightarrow eN$: Next generation

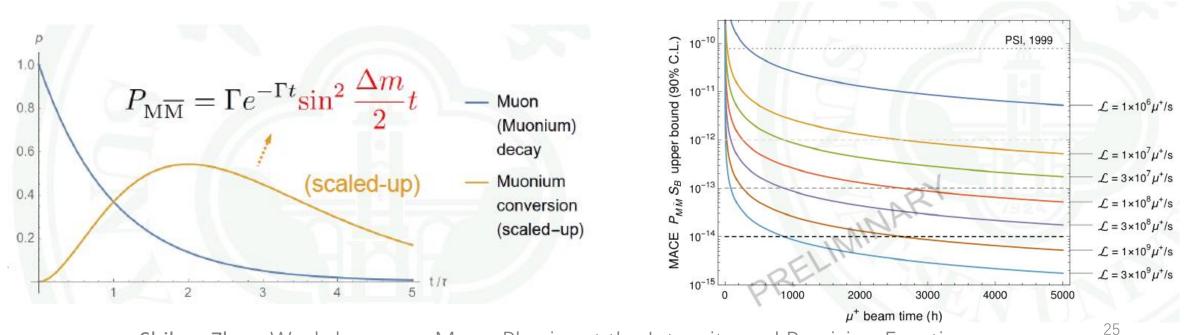
- Issues
 - FFA needs special muon beam input: narrow bunch, low rate.
 - 1 MW brings challenge to target station and detector/electronics.
- Benefits
 - Pure low energy muon beam: no longer relies on delay window. We can finally probe high-Z material: possible to tell apart different NP models.



$\mu N \rightarrow eN$: Next generation

- FermiLab will have its accelerator upgraded: PIP-II, 8kW -> 100 kW
- Advanced Muon Facility (AMF) was proposed to make use of PIP-II for next generation muon physics
- $\mu N \rightarrow eN$ plan in AMF took the idea from PRISM: in cooperation.
- AMF proposed to use compressor ring to make beam structure for FFA
 - 10 ns bunches at 100-1000 Hz
- Pile-up effect will be too much
 - Need PRISM type detector: select electrons.
 - $\mu^- N \rightarrow e^+ N$ needs separate run in this case.

AMF: hep-ex 2203.08278



• Starting from muonium formed in special target (Aerogel/SF-He/...)

• Search for the the high-E electron and low-E positron.

 $M \to M$

• Background: internal ($\mu \rightarrow eeevv$) and combinatorial events

Shihan Zhao, Workshop on a Muon Physics at the Intensity and Precision Frontiers

Transitions with μ in the final state

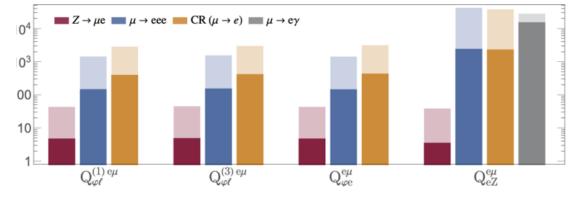
Results from LHCb Improved upper limits at 90%(95%) CL $\mathcal{B}(B^0 \to K^{*0}\mu^+e^-) < 5.7(6.9) \times 10^{-9}$ $\mathcal{B}(B^0 \to K^{*0}\mu^-e^+) < 6.8(7.9) \times 10^{-9}$ $\mathcal{B}(B^0 \to K^{*0}\mu^\pm e^\mp) < 10.1(11.7) \times 10^{-9}$ wrt Belle's result ($\mathcal{O}(10^{-7})$) [PRD 98, 071101(R) (2018)] World's first limit at 90%(95%) CL $\mathcal{B}(B_s^0 \to \phi\mu^\pm e^\mp) < 16.0(19.8) \times 10^{-9}$

Results from BES III

	J^P	Generate	eμ
η'	0-	$J/\psi \rightarrow \gamma \eta^\prime,(5.25\pm0.07)\times10^{-3}$	4.7×10^{-4}
$\eta_c(1S)$	0^{-}	$J/\psi \rightarrow \gamma \eta_c(1S), (1.7 \pm 0.4) \%$	no result
J/ψ	1^{-}	$e^+e^- \to J/\psi, 1\times 10^{10}$	4.5×10^{-9}
$\psi(3686)$	1-	$e^+e^- \rightarrow \psi(3686), 2.7\times 10^9$	no result
χ_{cJ}	J^+	$\psi(2S) \to \gamma \chi_{cJ}, \sim 10~\%$	no result
$h_c(1P)$	1^+	$\psi(2S) \to \pi^0 h_c(1P), (7 \pm 5) \times 10^{-4}$	no result

Results from Belle/Belle II

Belle opened world best constraints of the LFV $K^*l^+l^-$ modes


 $\begin{array}{ll} \mathcal{B}(B^0 \to K^{*0} \mu^+ e^-) &< 1.2 \times 10^{-7} \\ \mathcal{B}(B^0 \to K^{*0} \mu^- e^+) &< 1.6 \times 10^{-7} \\ \mathcal{B}(B^0 \to K^{*0} \mu^\pm e^\mp) &< 1.8 \times 10^{-7} \end{array}$

Belle II can reach 90% of UL at $O(10^{-8})$ with 50 ab⁻¹

Results from NA62, based on Run1 (2016-2018). Run2 on going (2021-CERN LS3)

Channel	BR UL (PDG 2019)	BR UL : NA62	Expected Background	Observed	Publication
$K^+ o \pi^- \mu^+ e^+$	50×10^{-11}	4.2×10^{-11}	1.07 ± 0.20	0	PRL 127 (2021) 131802
$K^+ ightarrow \pi^+ \mu^- e^+$	52×10^{-11}	6.6×10^{-11}	0.92 ± 0.34	2	PRL 127 (2021) 131802
$\pi^0 o \mu^- e^+$	34×10^{-10}	3.2×10^{-10}	0.23 ± 0.15	0	PRL 127 (2021) 131802
$K^+ \to \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11} *	0.92 ± 0.34	1	PLB 797 (2019) 134794
$K^+ o \pi^- e^+ e^+$	64×10^{-11}	5.3×10^{-11}	0.43 ± 0.09	0	PLB 830 (2022) 137172
$K^+ \to \pi^- \pi^0 e^+ e^+$	N/A	8.5×10^{-10}	0.044 ± 0.020	0	PLB 830 (2022) 137172
$K^+ o \mu^- \nu e^+ e^+$	N/A	8.1×10^{-11}	0.26 ± 0.04	0	PLB 838 (2023) 137679

Expectation from FCC-ee/CEPC, and a comparison in EFT.

L. Calibbi, X. Marcano and J. Roy, Eur. Phys. J. C 81 (2021) 4054

Giulia Frau, CLFV 2023

Existing:BABAR at SLACBELE-II at SuperKEKBATLAS, CMS, LHCb at LHCExperimental
status:Image: Image: Imag

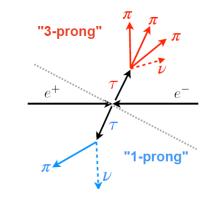
Proposed:

FCC at CERN

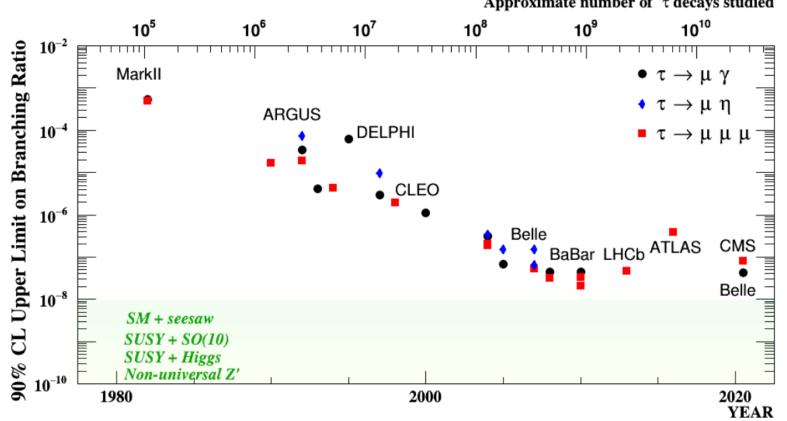
EIC at BNL

STCF at China

Searching CLFV in au sector


- Complementary to μ sector.
- Availability: B-Factory experiments BaBar, Belle and Belle II, and future prospects at Super Tau Charm Factory, LHC, EIC and FCCee experiments.
- Low energy processes
 - au decay: more than 50 channels.
 - B decay, J/ψ decay.
- High energy processes
 - Heavy decay: Higgs, Z, top quark.

Complementary to each other: sensitive to different models/operators.


au decay: ~50 benchmark decay channels

- Lepton flavor violation (charge conjugate modes implied)
 - $\tau \rightarrow e/\mu \gamma$ (Belle II, STCF, FCC-ee)
 - $\tau \rightarrow e/\mu$ (scalar/pseudoscalar/vector mesons) (Belle II)
 - $\tau \rightarrow e \ e \ e \ (Belle \ II)$
 - $\tau \rightarrow \mu \mu \mu$ (Belle II, ATLAS, CMS, LHCb, STCF, FCC-ee)
 - $\tau \rightarrow e \ \mu \ \mu, \ \mu \ e \ e$ (Belle II)
 - $\tau \rightarrow e/\mu$ h h (non-resonant final states with h= π/K) (Belle II, STCF)
 - $\tau \rightarrow e/\mu$ invisible (α) (Belle II)
 - $H \rightarrow e \tau, \mu \tau$ (ATLAS, CMS)
 - $Z(Z') \rightarrow e \tau, \mu \tau (ATLAS, CMS)$
 - $e \rightarrow \tau$ transitions (EIC)
- Lepton number violation
 - $\tau^- \rightarrow e^+ h^- h^-$ (non-resonant final states with $h=\pi/K$) (Belle II)
 - $\tau^- \rightarrow \mu^+ h^- h^-$ (non-resonant final states with $h=\pi/K$) (Belle II)
- Baryon number violation
 - $\tau^- \rightarrow \Lambda \pi^-, \overline{\Lambda} \pi^-$ (Belle II)
 - $\tau^- \rightarrow \overline{p} \ \mu^+ \ \mu^-, \ p \ \mu^- \ \mu^-$ (Belle II, LHCb)

- Best place to search for τ decay is the B factory from e^+e^- collider.
 - Large production cross-section.
 - Well-defined initial state
 - A large
 - Formerly: CLEO, BaBar, Belle
 - Now: Belle II
- pp collider can still compete on some channels.

History of golden channels

Approximate number of τ decays studied

Swagato Banerjee, CIPANP2022

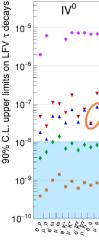
Recent updates on Belle II

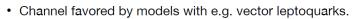
arXiv:2203.14919

	Ob	served Limit	s	Exp	ected Limits	
$\tau^- \rightarrow$	Experiment	Luminosity	UL (obs)	Experiment	Luminosity	UL (exp)
$\mu^-\phi$	Belle [99] BaBar [100]		8.4×10^{-8} 1.9×10^{-7}	Belle II [54]	$50 \ {\rm ab}^{-1}$	8.4×10^{-10}

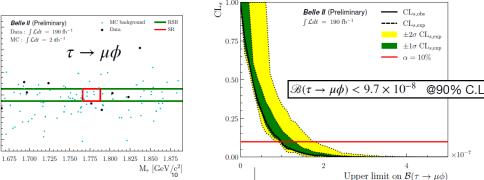
Using 2019-2021 data: 190 fb⁻¹

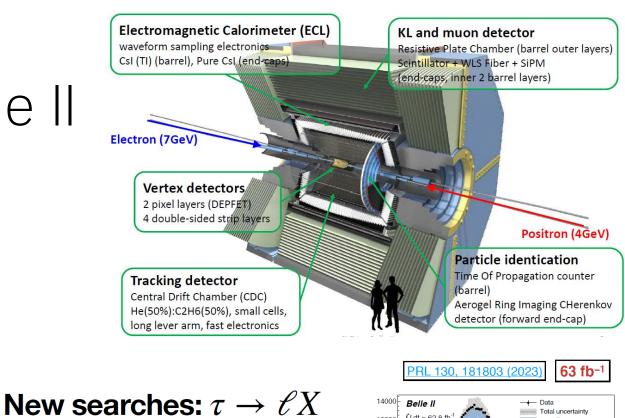
Belle II (Preliminary)

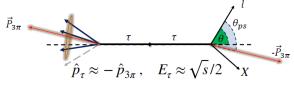

Data : $\int \mathcal{L} dt = 190 \text{ fb}$


MC : $\int \mathcal{L} dt = 2 \, \mathrm{db}^{-1}$

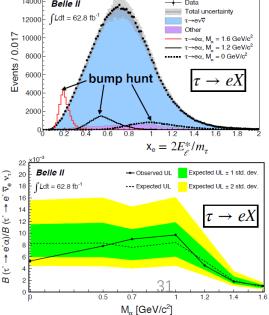
arXiv:2305.04759


Enhancing statistics: $\tau \rightarrow \ell \phi$

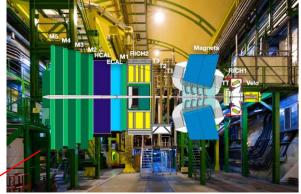

and a second second

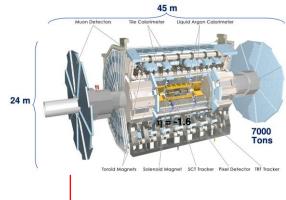


- Improve Belle efficiency x2 by not reconstructing the other τ : ϵ =6.5%(μ)/6.1%(e)
- Reconstruct $\tau \to \ell \phi (\to K^+ K^-)$, suppress background with BDT instead.
- Poisson counting in signal region (SR), expected background from reduced sidebands (RSB) in data, scaled with simulations.



- Invisible LFV particles ("X" or " α ") can emerge from NP models e.g. light ALP: JHEP 09 (2021) 173
- Approximate the τ rest frame using $\tau \rightarrow 3\pi\nu$:

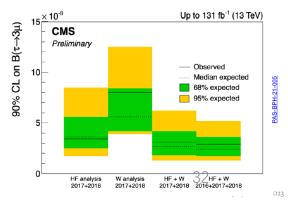

- Bump search over the $\tau \rightarrow \ell \bar{\nu} \nu$ spectrum.
- Ratio $\mathscr{B}(\tau \to \ell X)/\mathscr{B}(\tau \to \ell \bar{\nu} \nu)$ allows partial cancellation of systematics (mainly lepton ID).
- Most stringent limit, 2.2-14 better than previous.



Recent updates on LHCb & CMS

arXiv:2203.14919

	Ob	served Limit	s	Expected Limits				
$\tau^- \rightarrow$	Experiment	Luminosity	UL (obs)	Experiment	Luminosity	UL (exp)		
$\mu^-\mu^+\mu^-$	Belle [102]		2.1×10^{-8}	Belle II [54]	50 ab^{-1}	3.6×10^{-10}		
	BaBar [103]	$468 \ {\rm fb}^{-1}$	3.3×10^{-8}					
	LHCb [61]		4.6×10^{-8}	LHCb [76]	$300 \ {\rm fb}^{-1}$	$O(10^{-9})$		
	CMS [67]	$33 {\rm fb}^{-1}$	8.0×10^{-8}	CMS [77]	$3 {\rm ab}^{-1}$	3.7×10^{-9}		
	ATLAS [68]	20fb^{-1}	3.8×10^{-7}	ATLAS [78]	3ab^{-1}	1.0×10^{-9}		
				STCF [74]	1ab^{-1}	1.4×10^{-9}		
				FCC-ee [87,91]	150 ab^{-1}	$O(10^{-10})$		



- $\tau \rightarrow \mu \mu \mu$ decay
- Final result extracted from simultaneous parametrized fit to all the signal regions including the results from 2016 data

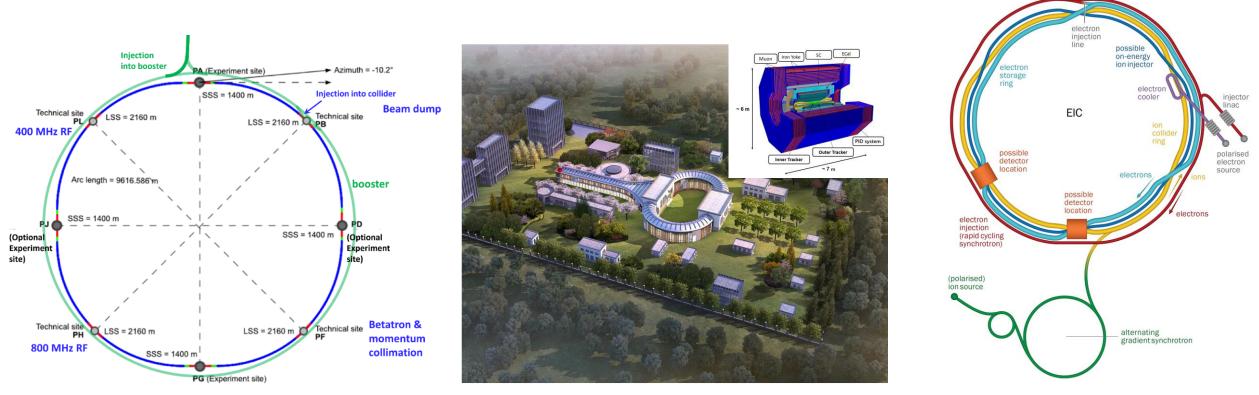
15

- $Br(\tau \rightarrow \mu\mu\mu) \le 2.9 \times 10^{-8}$ at 90% CL
- Getting very close to the world limit from Belle (2.1×10⁻⁸ at 90% CL)

- Current best experimental limit from Belle [arXiv:1001.3221]
 - 2.1×10⁻⁸ at 90% CL

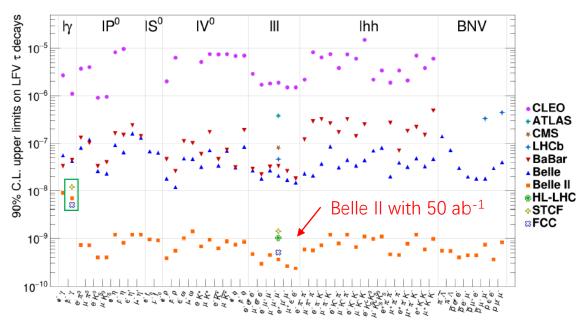
The $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$ decay

- LHCb analysis on Run 1 data [JHEP02(2015)121]
 - $D_s^+ \rightarrow \phi(\mu^+\mu^-)\pi^+$ used as a normalisation channel
 - Challenges: identify and reject background sources
 - Combinatorial and mis-ID background $(D_{(s)}^+ \to 3\pi, D^+ \to K^-\pi^+\pi^+)^{-1}$
 - Background suppression achieved by means of multivariate classifiers
 - Upper limit: 4.6(5.6)×10⁻⁸ at 90%(95%) CL
- Ongoing analysis with Run 2 data (coming out soon!)
- Extrapolated limit from Run 1 to Run 1 + Run 2 (higher luminosity and cross section)
 - 2.5(3.1)×10⁻⁸ at 90%(95%) CL
- Development of a more efficient selection


hin LHCb per (c) undidat f Calibrated $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ Data sidebands 0.4 0.6 0.8 M3body response CL LHCb 0.8 0.7 Run 1 0.6 0.5 0.4 0.3 0.2 $B(\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}) [\times 10^{-8}]$

LFU and cLFV searches at LHCb

Future projects



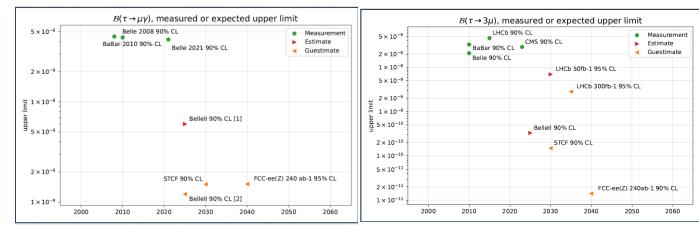
Tentative timeline for data-taking arXiv:2203.14919

Prospect in the future

Estimation as of Snowmass 2021 arXiv:2203.14919

Details about $\tau \rightarrow \mu \mu \mu$:

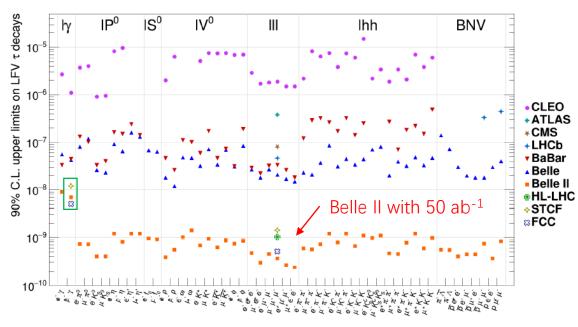
	Ob	served Limit	ts	Expected Limits			
$\tau^- \rightarrow$	Experiment	Luminosity	UL (obs)	Experiment	Luminosity	UL (exp)	
$\mu^-\mu^+\mu^-$	Belle [102]	782 fb^{-1}	2.1×10^{-8}	Belle II [54]	50 ab^{-1}	3.6×10^{-10}	
	BaBar [103]	$468 \ {\rm fb}^{-1}$	3.3×10^{-8}				
	LHCb 61	$3 {\rm fb}^{-1}$	4.6×10^{-8}	LHCb [76]	$300 {\rm fb}^{-1}$	$O(10^{-9})$	
	CMS [67]	$33 {\rm fb}^{-1}$	8.0×10^{-8}	CMS [77]	$3 {\rm ab}^{-1}$	3.7×10^{-9}	
	ATLAS 68	$20 {\rm fb}^{-1}$	3.8×10^{-7}	ATLAS [78]	3 ab^{-1}	1.0×10^{-9}	
				STCF [74]	1ab^{-1}	1.4×10^{-9}	
				FCC-ee [87,91]	150 ab^{-1}	$O(10^{-10})$	


Tentative timeline for data-taking arXiv:2203.14919

Estimation as of CLFV 2023

	present				→ future			
	CLEO, CLEOIII	LEP 100	Belle, <i>BABAR</i>	Belle II	SCT	STCF	CEPC(Z)	FCC-ee(Z)
E _{см} [GeV]	${\sim}10.6$	92	${\sim}10.6$	${\sim}10.6$	2 - 6	2 – 7	(92
$\int \mathcal{L}dt \ [ab^{-1}]$	0.01		1.5	50	1	.0		240
tau pairs	$1 \cdot 10^{7}$	0.8·10 ⁶	$1.4 \cdot 10^{9}$	46 .10 ⁹	30	10 ⁹	30·10 ⁹	270 ·10 ⁹

note: SCT & SCFT tau pairs estimate assuming 10 years of tau-pairs-optimized CM energies running


Alberto Lusiani, CLFV 2023

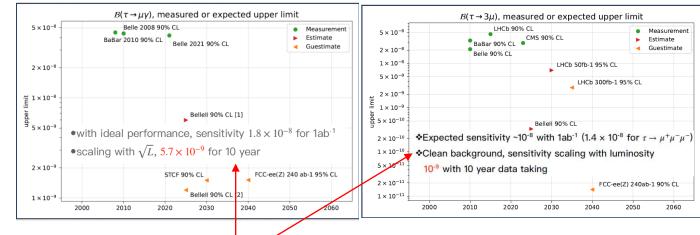
arXiv:2203.14919

Prospect in the future

Estimation as of Snowmass 2021 arXiv:2203.14919

Details about $\tau \rightarrow \mu\mu\mu$:

	Ob	served Limit	ts	Expected Limits			
$\tau^- \rightarrow$	Experiment	Luminosity	UL (obs)	Experiment	Luminosity	UL (exp)	
$\mu^-\mu^+\mu^-$	Belle [102]		2.1×10^{-8}	Belle II [54]	$50 \ {\rm ab}^{-1}$	3.6×10^{-10}	
	BaBar [103]	$468 \ {\rm fb}^{-1}$	3.3×10^{-8}				
	LHCb [61]	$3 {\rm fb}^{-1}$	4.6×10^{-8}	LHCb [76]	$300 {\rm fb}^{-1}$	$O(10^{-9})$	
	CMS [67]	$33 {\rm fb}^{-1}$	8.0×10^{-8}	CMS [77]		3.7×10^{-9}	
	ATLAS 68	$20 {\rm fb}^{-1}$	3.8×10^{-7}	ATLAS [78]	3 ab^{-1}	$1.0 { imes} 10^{-9}$	
				STCF [74]	1ab^{-1}	1.4×10^{-9}	
				FCC-ee [87,91]	150 ab^{-1}	$O(10^{-10})$	

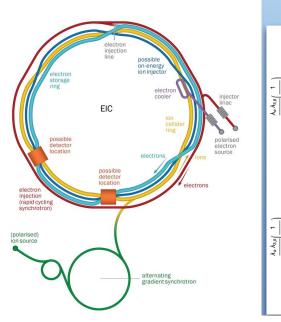

Tentative timeline for data-taking arXiv:2203.14919

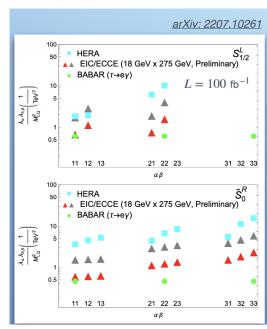
Estimation as of CLFV 2023

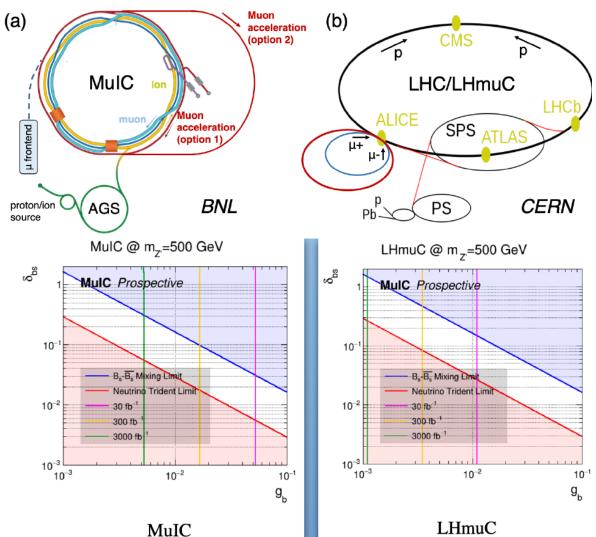
	present					futur	е	
	CLEO, CLEOIII	LEP 100	Belle, <i>BABAR</i>	Belle II	SCT	STCF	CEPC(Z)	FCC-ee(Z)
E _{см} [GeV]	${\sim}10.6$	92	${\sim}10.6$	${\sim}10.6$	2-6	2 – 7	(92
$\int \mathcal{L}dt \ [ab^{-1}]$	0.01		1.5	50	1	.0		240
tau pairs	$1 \cdot 10^{7}$	0.8·10 ⁶	$1.4 \cdot 10^{9}$	46 .10 ⁹	30-	10 ⁹	30·10 ⁹	270 ·10 ⁹

note: SCT & SCFT tau pairs estimate assuming 10 years of tau-pairs-optimized CM energies running

Alberto Lusiani, CLFV 2023




STCF estimated UL according to Teng XIANG, CLFV 2023

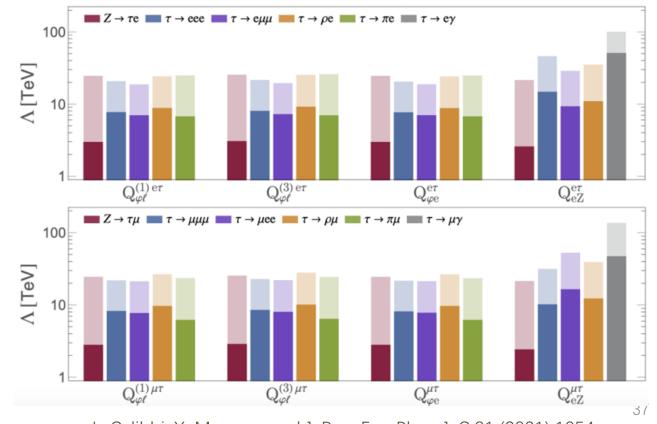

arXiv:2203.14919

Prospect in the future: EIC, MuIC, LHC/LHmuC

- EIC and MuIC, LHmuC provide sensitivities on unique channels.
 - Two examples shown here.

Zuo, CLFV 2023

Transitions with au in the final state


Current limits:

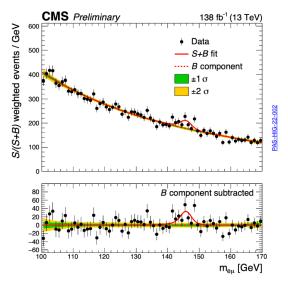
arXiv:2203.14919

Channel	Upper limit	Experiment [Ref.]
$J/\psi \to e^{\pm}\tau^{\mp}$	7.5×10^{-8}	BES III [108]
$J/\psi \to \mu^{\pm} \tau^{\mp}$	2.0×10^{-6}	BES 109
$B^0 \to e^{\pm} \tau^{\mp}$	2.8×10^{-5}	BaBar 110
$B^0 o \mu^{\pm} \tau^{\mp}$	2.2×10^{-5}	BaBar 110
	1.2×10^{-5}	LHCb 62
$B^+ \to \pi^+ e^{\pm} \tau^{\mp}$	7.5×10^{-5}	BaBar [111]
$B^+ \to \pi^+ \mu^\pm \tau^\mp$	7.2×10^{-5}	BaBar [111]
$B^+ \to K^+ e^{\pm} \tau^{\mp}$	$3.0 imes 10^{-5}$	BaBar [111]
$B^+ \to K^+ \mu^\pm \tau^\mp$	4.8×10^{-5}	BaBar [111]
$B^+ \to K^+ \mu^- \tau^+$	$3.9 imes 10^{-5}$	LHCb 63
$B^0_s o \mu^{\pm} \tau^{\mp}$	3.4×10^{-5}	LHCb 62
$\Upsilon(1S) \to e^{\pm} \tau^{\mp}$	2.7×10^{-6}	Belle [112]
$\Upsilon(1S) \to \mu^{\pm} \tau^{\mp}$	2.7×10^{-6}	Belle 112
$\Upsilon(2S) \to e^{\pm} \tau^{\mp}$	3.2×10^{-6}	BaBar [113]
$\Upsilon(2S) \to \mu^{\pm} \tau^{\mp}$	3.3×10^{-6}	BaBar [113]
$\Upsilon(3S) \to e^{\pm} \tau^{\mp}$	4.2×10^{-6}	BaBar [113]
$\Upsilon(3S) \to \mu^{\pm} \tau^{\mp}$	3.1×10^{-6}	BaBar [113]
$Z \to e^{\pm} \tau^{\mp}$	$5.0 \times 10^{-6} (*)$	ATLAS [69]
$Z o \mu^{\pm} \tau^{\mp}$	$6.5 \times 10^{-6} (*)$	ATLAS [69]
$H \to e^{\pm} \tau^{\mp}$	0.47% (*)	ATLAS [65]
	0.22% (*)	CMS 66
$H \to \mu^{\pm} \tau^{\mp}$	0.28% (*)	ATLAS 65
	0.15%~(*)	CMS [66]
	26%~(*)	LHCb [64]

Expectation from FCC-ee/CEPC, and a comparison in EFT.

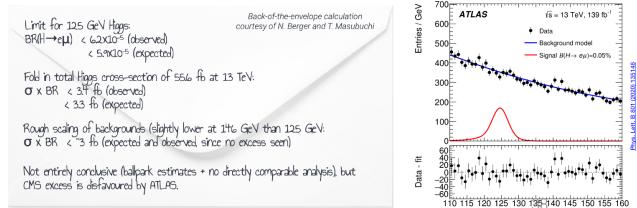
• High energy processes keep competitive with low energy ones!

L. Calibbi, X. Marcano and J. Roy, Eur. Phys. J. C 81 (2021) 1054


Hint about CLFV on CMS?

- Not found on ATLAS.
- Needs further scrutinization...

Near Higgs eµ search in CMS


- CMS searched also for $X \to e^\pm \mu^\mp$ near the Higgs mass
- Two categories to split VBF from non-VBF production modes
- Background modeled using a Bernstein polynomial function

Near Higgs $e\mu$ search in ATLAS

• ATLAS search for $H(125) \rightarrow e\mu$ not directly comparable with CMS analysis, but back-of-theenvelope calculation from sideband data disfavors a narrow-width excess, as observed by CMS

CLFV2023 - June 21, 2023

BES IIII & STCF

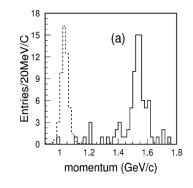
Results from BES III

PRD 94, 074023 (2016)

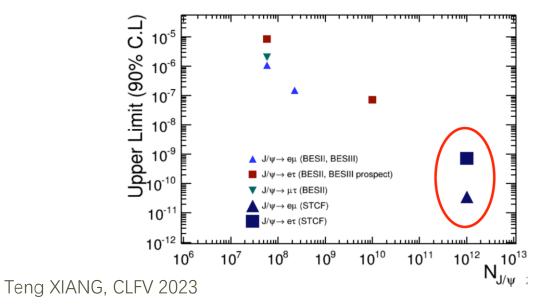
	J^P	Generate	$e\mu$	$e\tau$	$\mu\tau$	$\gamma \ell_1 \bar{\ell}_2$
η'	0-	$J/\psi \to \gamma \eta^\prime,(5.25\pm0.07)\times10^{-3}$	4.7×10^{-4}	-	-	
$\eta_c(1S)$	0-	$J/\psi \rightarrow \gamma \eta_c(1S), (1.7 \pm 0.4) \%$	no result	no result	no result	
J/ψ	1^{-}	$e^+e^- \to J/\psi, 1\times 10^{10}$	4.5×10^{-9}	7.5×10^{-8}	2.0×10^{-6}	no nomit
$\psi(3686)$	1-	$e^+e^- \to \psi(3686), 2.7 \times 10^9$	no result	no result	no result	no result
χ_{cJ}	J^+	$\psi(2S) \to \gamma \chi_{cJ}, \sim 10~\%$	no result	no result	no result	
$h_c(1P)$	1^{+}	$\psi(2S) \rightarrow \pi^0 h_c(1P), (7 \pm 5) \times 10^{-4}$	no result	no result	no result	

 $J/\psi \to \mu \tau$

𝔅 J/ψ → μτ, τ → eνν, BESII 58M


- •Two opposite charged tracks, identified as e and mu
- No photons
- •Electron momentum < 1.4GeV to suppress Bhabha bkg
- •Signal region: mono-energetic muon, momentum in [1.0, 1.08]GeV

*No events observed.


♦Upper limit: $Br(J/\psi \to \mu \tau) < 2.0 \times 10^{-6}$ @ 90% C.L.

*****Update with 10B J/ψ in progress

Phys. Lett. B 598 (2004) 172-177

Prospect on STCF

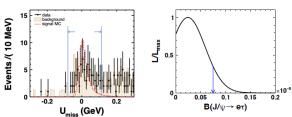
 $J/\psi
ightarrow e au$

♦ J/ψ → $e\tau$, τ → $\pi\pi^0 v$, 10B J/ψ

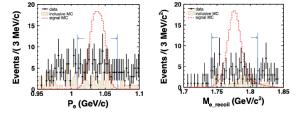
•blind analysis to avoid bias

- •select one electron and one charged pion.
- •at least two photon showers and one π^0 .
- •two-body decay: mono-energetic e and recoiling
- •one undetected neutrino with missing energy
- signal region on Umiss

*No excess of events observed over the expected background (J/ψ + continuum)


•82 v.s. 70.5 ± 13.3

♦UL with Bayesian approach


- • $Br(J/\psi \to e\tau) < 7.5 \times 10^{-8}$ @ 90% C.L.
- improves the previous result by

two orders of magnitudes

• comparable with the theoretical predictions

Phys. Rev. D 103, 112007 (2021)

Summary

- CLFV processes provide a clean test field for new physics models.
 - The search for CLFV can strengthen our understanding to the essence of flavors.
- CLFV shall be searched in both μ sector and τ sector. And the search shall explore all possible channels.
 - To understand the new physics better.
- 2020's will be a fruitful decade for CLFV experiments:
 - μ sector: MEGII, Mu3e (phase I & Phase II), Mu2e (run 1 & run 2), COMET (Phase I & Phase II), MACE,…
 - au sector: Belle II, HL-LHC
- 2030's and onward will be more exciting with the planned experiments:
 - μ sector: Next stage $\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$? Mu2e II, AMF, PRISM, …
 - τ sector: EIC, FCC-ee, STCF