Research and Development of Jinping Neutrino Experiment

Zhe Wang (for the research group) Tsinghua University

July 4, 2023 @ WIN2023, Zhuhai

Contents

Near term goal of the project
 Detector and technology development
 Liquid scintillator development
 Summary

Near term goal of the project

Experimental site at CJPL

Solar neutrino observatory at China Jinping underground laboratory

D2 hall of CJPL phase II

2023/7/4

Concept of the detector

1. Hundred-ton solar neutrino observatory

- a. Detector construction
- b. Replaceable detection media, allowed density range \pm 20% wrt water, oil- or water- based liquid scintillator
- 2. Low background PMT, U, Th<1 Bq/kg, K<2.4 Bq/kg
- 3. ADC chips and waveform readout electronics
 - a. AD chips, 12 bit, 1 GSPS, 350mW
 - b. waveform readout, 400 MHz, 40Gbps

4. Solar B-8 neutrino detection with water

Detector and technology development

One-ton prototype

1-ton prototype at CJPL-I Running for ~5 years

Background measurement

			\mathbf{PMT}	\mathbf{LS}				
	Decay rate [Bq/g]	214 Bi	-	$(1.59 \pm 0.20) \times 10^{-8}$				
		208 Tl	$(1.64 \pm 0.47) \times 10^{-3}$	-				
		^{212}Bi	-	$<(1.01\pm0.20)\times10^{-9}$				
~		40 K	$(1.24 \pm 0.35) \times 10^{-2}$	-				
C		238 U	-	$(1.28 \pm 0.16) \times 10^{-12}$				
е	Contamination level $[g/g]$	232 Th	$(1.12 \pm 0.32) \times 10^{-6}$	$<(2.49\pm0.50)\times10^{-13}$				
		40 K	$(4.67 \pm 1.35) \times 10^{-8}$	-				
Waveform analysis, total Muon flux and muon-								
ref	flection reconstru	ction	induced neutron yield					
30-	Wav	eform shold	Definition of the second secon	1				
25		rge 1.2						

2023/7/4

500 hundred ton detector foundation pit

Last month: First stage finished, 15.3*13m*3m Will be water- and radon- proofed

Detector tank and main structure

1.Contain veto water
2.Hold PMTs' SST sphere
3.Hold central acrylic vessel

a. gravity, and
b. buoyancy

4. Support instruments on top

Rope to hold the central acrylic vessel

1. Acrylic vessel and rope

- a. 500 cubic meter
- b. Rope for low background **2.Rope net**
 - a. Gravity
 - b. Buoyancy

3. Rope tension test

- 4. Creeping test
 - a. in water
 - b. in white oil

Replaceable detection media, allowed density range \pm 20% wrt water, oil- or water- based

liquid scintillator

Joint PMT study with NNVT, IHEP

8-inch, MCP-based PMT, Low U、Th、K background, Fast, 30% DE

Raw material and production environment

Structure improvement and part selection

Cable

HV divider 🛛 🛛 📈

MCP magnifying

FADC and readout design and testing

Goal:

- a. AD chips, 12 bit, 1 GSPS,350mW
- b. waveform readout, 400 MHz, 40Gbps

Readout board testing

Solar B8 neutrino and background simulation

In the central zone of the detector, B8 neutrinos have a good signal-to-background ratio

- Gamma, beta, neutron background simulation for PMT, steel structure, rock, water
- b. Solar neutrino simulation

Liquic scintillator development

The option with Lithium-7 and LiCl aqueous solution

Cross-section [cm²] **1.CC process for** v_e : $\nu_e + {}^7\text{Li} \rightarrow {}^7\text{Be} + e^-(+\gamma)$ v<mark>e-7</mark>1 10 Measure neutrino energy 10⁻⁴³ 2.High cross-section: v_{e} -Li7: 60 times of v_{e} -e elastic 10^{-4} scattering for solar B8 neutrinos 3. High natural abundance of Li7: 92% 4. High solubility: 80 g LiCl in 100 g water

	$^{7}\mathrm{Li}$	$^{37}\mathrm{Cl}$	All CC	e^-
Molarity (mol/L)	11	2.9	NA	610
Event rate (No Osci)	305	22.7	328	271
Event rate (Osci)	101	7.28	108	124
Event rate (Osci & >4 MeV)	94.5	7.24	102	48.0
Event rate (Osci & >5 MeV)	87.3	7.17	94.4	34.5

-37C

6

8

v_-e

ν_{u.τ}-e

Neutrino Energy [MeV]

v_e CC, ES, and \bar{v}_e detections

1.CC process for v_e : $\nu_e + {}^7\text{Li} \rightarrow {}^7\text{Be} + e^-(+\gamma)$ Measure neutrino energy 2. Elastic scatter on e⁻: **3.Delayed coincidence for** $\bar{\nu}_{\rho}$: $\bar{\nu}_e + p \rightarrow n + e^+$ with neutron capture on H, Li6, and Cl35 measure $\bar{\nu}_e$ energy

Spectrometer for v_e and \bar{v}_e Good chance for solar and geo neutrinos

UV spectrum and attenuation length of LiCl solution

Saturated LiCl solution are purified

- 1. Active carbon absorption and thermal recrystallizaiton
- 2. Transparency for a wide range
- 3. Attenuation length: 50 m at 430 nm

LED

Convex lenses

LiCl aqueous solution with carbostyril 124

Adding 1 ppm C124 to LiCl aqueous solution

- 1. Convert short wavelength UV to longer wavelength
- 2. Convert short attenuation length UV to long attenuation length visible light

LiCl aqueous solution with carbostyril 124

Light yield verification with a muon telescope 3.7 PE detected from isotropic scintillation; 12.3 PE for Cherenkov

Simulation and position, energy, and direction reconstruction

Particle, optics simulation in water, scintillatior, and doped scintillator

Cherenkov and scintillation modelling

Reconstruction based on the hits' charge and time

 $\mathcal{L} = \prod_{i}^{N_{\text{PMT}}} P_{i}^{C} \prod_{j}^{n_{i}^{\text{Obs}}} P_{ij}^{T}$ charge time

Reconstruction of Cherenkov scintillation detector

Reconstruction performance

Resolution [cm]

 \times

60

50

40

30

20

10

2

- 1. Good direction precision with a pure Cherenkov detector or with a proper scintillation component (minor or slow)
- 2. Better position and energy precision

90

24 PE

2023/7/4

Testing one solar neutrino oscillation

From matter-dominant to vacuum oscillation: upturn

2023/7/4

Solar neutrino upturn sensitivity with LiCl solution

A competitive option for solar neutrino oscillation study

1.Hundred-ton solar neutrino observatory at CJPL II

- a. Detector construction
- b. Replaceable detection media, allowed density range ± 20% wrt water, oil- or water- based liquid scintillator
 2.New MCP-PMT, Low background, fast, high QE
 3.ADC chips and waveform readout electronics under design and testing
 - a. AD chips, 12 bit, GSPS, 350mW
- b. waveform readout, 400 Mz, 40Gbps
 4.Solar B-8 neutrino detection with water
 5.Explored the option with LiCl aqueous solution

Thank you.

http://jinping.hep.tsinghua.edu.cn

2023/7/4