

WIN2023

The 29th International Workshop on Weak Interactions and Neutrinos

Geo-neutrino Signal at JUNO Predicted by Geological Models

Ruohan Gao*

on behalf of the JUNO collaboration

*China University of Geosciences, Beijing

Outline

1. Introduction

2. Global model and predicted signal

3. Local models and predicted signal

4. Conclusions

Probe Earth's interior with geo-neutrino

Geoscience inputs for geo-neutrino signal calculation

Geophysical models

- **Density** of source unit
- Earth's layers

- Geochemical models
 - U and Th abundances of source unit

Earth's layers and their estimated geo-neutrino signal

Crust: high Th & U

•

- CLM (Continental Lithospheric Mantle): relatively low Th & U
- Mantle: very low Th & U, large volume

Oceanic crust

Continental crust

 $S_{mantle} = S_{total} - (S_{crust} + S_{CLM})$

Definition of LOC and ROL

- LOcalCrust (LOC): a portion of local crust centered in JUNO
- Rest Of Lithosphere (ROL): the remaining crust and CLM

1. Introduction

Outline

2. Global models and predicted signal

3. Local models and predicted signal

4. Conclusions

Geophysical models for ROL

Models	GEMMA	CUB 2.0	CRUST2.0	RMM	CRUST 1.0	LITHO 1.0
Author	Negretti et al.	Shapiro and Ritzwoller	Laske et al.	Huang et al.	Laske et al.	Pasyanos et al.
Published year	2012	2002	2001	2013	2013	2014
Resolution	0.5°×0.5°	2°×2°	2°×2°	1°×1°	1°×1°	1°×1°
Methods	gravity field data	surface seismic wave data	reflection and refraction seismic data	average of GEMMA, CUB 2.0 and CRUST 2.0	modified from CRUST 2.0	modified from CRUST 1.0 combining surface seismic waves data

Uncertainties of geophysical model (RMM) for ROL

- Crustal thickness shows ~10% uncertainty in continents, and up to 40% uncertainty in oceans and continental margins.
- Density shows ~4% uncertainty.

11

Geo-neutrino signals from ROL

From V. Strati

- Half of the total geoneutrinos signal of the ROL is produced by the Upper Crust (UC)
- The contribution of the Continental Lithospheric Mantle (CLM) is 15%
- The relative uncertainty on the S(U+Th) of the ROL is about 25%
- Given an average ratio a(Th)/a(U) = 4.5 in the ROL, the S(Th)/S(U) is 0.31

6		S(Th)/S(II)		
b	U	Th	U + Th	3(11)/3(0)
Sed	0.37 <u>+</u> 0.06	0.12 ± 0.02	0.40 ± 0.04	0.33
UC	$4.32^{+1.03}_{-1.00}$	$1.17\substack{+0.16\\-0.15}$	$5.49^{+1.04}_{-1.01}$	0.27
MC	$1.70\substack{+1.08 \\ -0.66}$	$0.60^{+0.56}_{-0.28}$	$2.43^{+1.23}_{-0.80}$	0.36
LC	$0.26^{+0.23}_{-0.12}$	$0.12\substack{+0.02\\-0.02}$	$0.42\substack{+0.30 \\ -0.16}$	0.45
OC	0.05 ± 0.02	0.01 ± 0.01	0.06 ± 0.02	0.21
Bulk Crust	$6.84^{+1.57}_{-1.34}$	$2.09^{+0.65}_{-0.39}$	$9.07\substack{+1.70 \\ -1.48}$	0.31
CLM	$1.32^{+2.52}_{-0.91}$	$0.42^{+0.96}_{-0.30}$	$2.15^{+2.92}_{-1.28}$	0.31
ROL	8 . 56 ^{+3.24} _{-2.01}	$2.68^{+1.27}_{-0.70}$	$11.55_{-2.32}^{+3.60}$	0.31

1. Introduction

Outline

2. Global models and predicted signal

3. Local models and predicted signal

4. Conclusions

Models	GIGJ	JULOC	JULOC-I
Author	Reguzzoni et al.	Gao et al.	Han et al.
Published year	2019	2020	Under review
Area	6°×4°	$10^{\circ} \times 10^{\circ}$	$10^{\circ} \times 11^{\circ}$
Resolution	50×50×0.1 km	0.5°×0.5°×1 km	$0.4^{\circ} \times 0.4^{\circ} \times 1 \text{ km}$
Geophysical model	gravity and seismic data	seismic data	gravity and seismic data
Geochemical model		local data	local data

Geophysical model: crustal layers

15

Geophysical inputs: gravity and seismic data

Geophysical model: density

Geophysical inputs: seismic data

Geophysical model: crustal layers

Geophysical inputs: seismic data

Geophysical model: density

Geochemical inputs: geological map, rock sample data

Abundance of each voxel =

$$\sum_{i=1}^{n} Area\%(i) * Abundance(i)$$

i: rock type

Table 1.	U and	Th	abundances	in	geologic	units i	in the	regional	crust	in	the.	3- D	model.
----------	-------	----	------------	----	----------	---------	--------	----------	-------	----	------	-------------	--------

		<u>l-S1</u>	<u>gma</u>			<u>l-sig</u> i	<u>ma</u>	
Geologic Unit	U mean	+	-	Ν	Th mean	+	-	n
Granite	5.4	5.6	2.7	2200	23.7	16.2	9.6	2200
Intra-plate basalt	0.7	0.7	0.5	255	3.7	3.2	1.8	255
MORB	0.7	0.8	0.4	332	2.6	1.8	1.2	332
Siliciclastic rocks	2.7	1.2	0.8	391	11.1	12.8	5.9	391
Carbonites	0.9	0.5	0.3	31	3.6	2.9	1.6	31
Upper crust basement	3.0	2.1	1.2	57	15.4	10.7	6.3	57
Middle crust	0.6	0.4	0.4	10	1.9	1.4	1.4	10
Lower crust	0.04	0.08	0.03	55	0.1	0.3	0.08	55
Oceanic crust	0.7	0.8	0.4	332	2.6	1.8	1.2	332

Geochemical model:

Top layer (5 km): 0.5°×0.5° resolution

Upper crust basement: mean value

Middle crust: mean value

Lower crust: mean value

		<u>1-si</u>	1-sigm					
Geologic Unit	U mean	+	-	Ν	Th mean	+	-	n
Upper crust basement	3.0	2.1	1.2	57	15.4	10.7	6.3	57
Middle crust	0.6	0.4	0.4	10	1.9	1.4	1.4	10
Lower crust	0.04	0.08	0.03	55	0.1	0.3	0.08	55

Geophysical inputs: seismic and gravity data

Seismograph stations

Gravity anomaly data

Geophysical model: crustal layers

Geophysical inputs: seismic and gravity data

Seismograph stations

Gravity anomaly data

Geophysical model: density

- Different rock has different typical Vp.
- With the constraints from crustal Vp (geophysical model), we can estimate the proportion of different rock types in each voxel.

Upper crust	Middle crust	Lower crust
SED 0.08 BAS 0.02 BGN-GGN 0.1 GRA 0.4 MGW 0.25	BGN-GGN 0.1 AMP 0.9	IGR 0.6 MGR 0.2 MPE 0.2
SLT-PHY-QSC 0.15		

Estimated from geological map

Based on the study on Central East China

Gao et al., 1998

Surface heat flow map

Geochemical model: 0.4°×0.4°×1 km resolution

			$S_U \pm \sigma$	$S_{Th} \pm \sigma$	$S_{U+Th} \pm \sigma$
JULOC	Upper Crust	Top layer Basement	$\frac{10.5_{-0.7}}{8.1_{-3.7}}^{+0.7}$	$3.2_{-0.3}^{+0.3}$ $2.6_{-1.1}^{+1.8}$	$\frac{13.8_{-0.7}}{11.0_{-3.9}}^{+0.8}$
	Middle Crust		1.7 ± 1.0	0.4 ± 0.3	2.1 ± 1.1
	Lower Crust		$1.9_{-1.3}^{+3.8}$	$0.8_{-0.7}^{+5.7}$	$1.7_{-1.2}^{+4.0}$
	Oceanic Crust		0.2 ± 0.05	0.1 ± 0.01	0.3 ± 0.05
	Total		21.3 ± 4.0	6.6 ± 1.3	28.5 ± 4.5
			S _U	S _{Th}	S _{U+Th}
J0L0C-1	Continental Cr	ust	22.1	6.7	28.8
Preliminary results	Oceanic Crust		0.2	0.1	0.3
	Total		22.3	6.8	29.1

1. Introduction

Outline

2. Global models and predicted signal

3. Local models and predicted signal

4. Conclusions

- 1. Geochemical model has larger influence on geo-neutrino signal prediction than geophysical model, as the earth's continental crust is highly heterogenous in terms of U and Th abundances.
- 2. Local crust model (JULOC/JULOC-I) predicts higher geoneutrino signal than global models.
- 3. This is consistent with the wide distribution of high U/Th granite intrusions in the Cathaysia region around JUNO.

Thank you!