

The Design of Hard X-ray Spectroscopy Beamlines in Shenzhen Innovation Light source Facility (SILF)

Chunzhen Yang, Dr. Environmental Science and Chemistry Group Contact: yangcz@mail.iasf.ac.cn 2023.07.07

Shoulder the important task of the times, Light up the light of technology

1

Introduction of SILF Project 深圳产业光源介绍

2

X-ray coupled TEM Beamline X射线电子束联用线站 Environmental Science Beamline 环境能源线站 4

High Resolution Hard Xray Beamline 高分辨硬X射线谱学线站

Synchrotron Radiation light sources

Guangdong-Hong Kong-Macao Greater Bay Area

www.iasf.ac.cn

Shenzhen Innovation Light-source Facility (SILF)

SILF is a fourth-generation diffraction-limited synchrotron radiation with an electron energy of **3 GeV** and low emittance of **<100 pm-rad**, and it provides photons with a broad range of energy from **4 meV to 160 keV**.

Beamlines

Shoulder the important task of the times, Light up the light of technology

www.iasf.ac.cn

Hard X-ray Spectroscopy Beamlines

Environmental Science and Chemistry Group

	Beamlines	Front End	Energy (keV)	Mono- chromator	Key features	Experiments
1	X-ray coupled TEM Beamline X射线电子束联用线站	Wiggler	4.8 - 30	DCM	 ✓ Time resolved QXAFS ✓ Both high time resolution and high space resolution 	 ✓ XAFS ✓ QXAFS ✓ XAFS-TEM ✓ TEM-EELS
2	Environmental Science Beamline 环境能源线站	IVU22	2.05 – 16	DCM	 ✓ High detection limit ✓ High space resolution ✓ Element mapping image 	 ✓ μ-XRF ✓ μ-XRD ✓ μ-XANES
3	High Resolution Hard X-ray Beamline 高分辨硬X射线谱学线站	IVU24	4 – 20	DCM&HRM	 ✓ High energy resolution for electronic structure analysis ✓ 磁性材料测量 	✓ HERFD-XAS✓ RIXSXES/XRS✓ HAXPES

1

Introduction of SILF Project 深圳产业光源介绍

2

X-ray coupled TEM Beamline X射线电子束联用线站 Environmental Science Beamline 环境能源线站 4

High Resolution Hard Xray Beamline 高分辨硬X射线谱学线站

1. Key features

Time-resolved XAFS X-ray coupled TEM analyses

Dr. X. Wang Dr. M. Shu

Light source	Wiggler
Energy range (keV)	4.8 ~ 30
Energy resolution	~10 ⁻⁴
Flux at 10 keV (ph/s)	10 ¹² ~10 ¹³ ph/s
Spot size at sample (µm ²)	0.3×0.3 (EH1) 2×0.3 (EH2)
Key features:	100 ms

Methodology	
XAFS-TEM	
QXAFS	
XAFS	
EELS	

Application Fields
Catalysis
Battery
Environment
Archaeology

2. Beamline Optics

3. X-ray tracing and thermal analyses

Sample Spot	EH1	EH2
Position (m)	60	65
Energy (keV)	10	10
Size (μm², FWHM, H×V)	216.55×193.40	1939.98×278.17
Divergence(µrad², FWHM, H×V)	969.15×127.58	345.21×112.65
Flux (phs/s/0.1% bw)	1.56E+13 (10 keV)	6.00E+12 (10 keV)

Restance of the second	ANSYS SISS BERNARD ANSYS SISS ANSYS	ng Mirror • • • • • • • • • • • • • • • • • • •	DCM ANSYS
a <u>ns aas</u> <u>ans</u> <u>229</u> 634		425 64094	- 425: <u>2</u> 30p; 2411 - 245
OE	CVD	СМ	DCM
Power (W)	158	304	551
Power Density (W/mm ²)	3.81	0.018	2.19

4. Experimental Hutch

EH 1: Universal XAFS hutch

- ✓ Transmission XAFS
- ✓ Fluorescence XAFS
- ✓ Time solved XAFS

EH 2: TEM hutch ✓ XAFS-TEM

- ✓ HR-TEM
- ✓ EELS

5. Detectors and Instruments

Channel-cut Monochromator

In-situ XAFS

Ionization chamber

Lytle chamber

Solid state detector

TEM

XAFS-TEM

Silicon drift detector

Sample holder

6. User Facilities

X-ray coupled TEM Beamline was equipped with universal XAFS and TEM test, and a diversity of in situ XAFS devices for catalytical reaction, battery property test, and combined test by XAFS-TEM.

Multi-environmental test

Thermo catalytic operando cell

In situ cryogenic device

In situ battery cell

In situ electrochemical cell

Thermo catalytic cell

Automated in-situ XAFS battery test system

In-situ sample holder

7. Unique features

 Obtain the microscopy morphology ,element distribution and the valence state, local coordination structure of samples at the same time

8. Potential applications

Focus on the structure and chemical properties of catalysis, material science, electrode material, etc., in order to understand and design better materials

Morphology of industrial catalysts

Relationship of structure & activity Li-ion battery fuel cell Understanding the affection of environment (temperature, pression, voltage, charge time, etc.) to control a better operated conditions

www.iasf.ac.cn

1

Introduction of SILF Project 深圳产业光源介绍

2

X-ray coupled TEM Beamline X射线电子束联用线站 Environmental Science Beamline 环境能源线站 4

High Resolution Hard Xray Beamline 高分辨硬X射线谱学线站

1. Key features

high spatial resolution ultra-sensitive element detection

11

111

Dr.	Μ.	WANG	Dr.	X.	LIN

Light source	Undulator
Energy range (keV)	2.05 ~ 16
Energy resolution	~10 ⁻⁴
Flux at 2.5 keV (ph/s)	10 ¹² ph/s
Spot size at sample (µm ²)	~600×600 (EH1) ~0.5×0.5 (EH2)
Key features	Space resolution: < 0.5 μm Detection limit: ppb Cryogenic system: 10 k

Method	Applications
μ-XRF, XRF, TXRF, XFCT	Environmental science
μ-XANES, XANES	Energy materials
μ-EXAFS, EXAFS	Life sciences
μ-XRD, XRD	Geological science

2. Beamline Optics

Source	IVU22, λ =22mm, Bmax=1.04T, Gapmin=5 mm, L=4.5m
Angle acceptance (µrad)	45×45(H×V)
Toroidal Mirror	Rh 3mrad Vertical collimation Horizontal focus
Monochromator	Si(111), Si(311)
KB Mirror	Rh 4mrad
Harmonic Reject Mirror	Cr(2.05~3.5 keV), Ni(3.0~35.5 keV), Rh(9~15 keV),

www.iasf.ac.cn

85.1842

3. X-ray tracing and thermal analyses

OE	Primary slit	Toroidal Mirror	DCM
Absorbed Power (W)	2473	18	70.27
Power Density (W/mm ²)	88.19	0.17	40.02

4.45e-02

17.993

4. Experimental Hutch

EH 1: micro spot size

- ✓ XRF
- ✓ TXRF
- ✓ confocal-XRF
- ✓ XFCT
- ✓ XRD
- ✓ XAFS

EH 2: sub-micro spot size

- ✓ µ-XRF
- ✓ µ-TXRF
- ✓ µ-XFCT
- ✓ µ-XAFS

5. Detectors and Instruments

ion-chamber

36 elements Ge SSD

Eiger XRD detector

7 elements SDD

7D high precision sample stage

He/N₂/vacuum chamber

Optical camera

6. User Facilities

LHe/LN₂ cryostat

In situ catalytic system

Solid sample holder

gas cell

7. Unique features

• Obtain the chemical composition, element distribution and crystal structure simultaneously

8. Potential applications

valence states, local Structure

• Investigation of the Capacity Degradation Mechanism in S- containing Batteries

• Trace Key Mechanistic Features of catalysis reaction

• Long-term litter decomposition controlled by manganese redox cycling in soil

(nre) eouropage eouropage

Mn²

Mn³

Shoulder the important task of the times, Light up the light of technology

8. Potential applications

chemical composition, elements distribution

• A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time

- the process of elemental migration associated with marine sediments and sedimentary rocks
- Date and understand the behavior of migratory fish

1

Introduction of SILF Project 深圳产业光源介绍

2

X-ray coupled TEM Beamline X射线电子束联用线站 Environmental Science Beamline 环境能源线站 4

High Resolution Hard Xray Beamline 高分辨硬X射线谱学线站

1. Key features

High Energy Resolution

Dr. T. LIU

Dr. H. LI

Light source	Undulator		
Energy range (keV)	4.0 - 20.0		
Energy resolution	< 500 meV	Method	Application
Flux at 10 keV (ph/s)	10 ¹² ~10 ¹³ ph/s	RIXS, XES	Rare Earth Materials
Snot size at sample (um^2)	~ 6.0×3.0 (EH1)	HERFD-XAS	Magnetic Materials
	~ 2.0×1.0 (EH2)	2) XRS	Semiconductor
Key features	Photon in-Photon out Photon in-Electron out	HAXPES	Ferroelectrics, Multiferroics

2. Beamline Optics

Optics				
Collimating Mirror	Shape	Plane elliptical		
Primary Monochromator (DCM)	Туре	LN2 cooled Double Crystal		
	Energy range	4-20 keV		
	Resolving power	< 2 eV		
	Available reflections	Si(111), Si(311)		
Secondary monochromator (HRM)	Туре	Double channel-cut (+ +)		
	Energy range	5-20 keV		
	Resolving power	< 150 meV		
	Available reflections	Si(400)		
Phase retarder	Туре	Single stage, Single crystal diamond		
Kirkpatrick–Baez Mirror 1	Shape	Cylinder		
	Energy range	4-9 keV (Si) 9-20 keV (Rh)		
	Usage	Vertical & Horizontal focusing		
	Shape	Cylinder		
Kirkpatrick–Baez Mirror 2	Energy range	4-9 keV (Si) 9-20 keV (Rh)		
	Usage	Vertical & Horizontal focusing		

3. X-ray tracing and thermal analyses

Sample Spot	EH1	EH2
Position (m)	58	64.5
Energy (keV)	10	10
Size (µm², FWHM, H×V)	5.65×2.29	1.73×1.13
Divergence(µrad², FWHM, H×V)	105.82×45.90	328.81×92.69
Flux (phs/s/0.1% bw)	1.19E+13 (10 keV)	8.77E+12 (10 keV)

OE	Primary Slit	Collimating Mirror	DCM
Absorbed Power (W)	2673.64	12.95	84.50
Power Density (W/mm ²)	48.38	12.40	18.80

www.iasf.ac.cn

0.6

深圳综合粒子设施研究院 Institute of Advanced Science Facilities, Shenzher

4. Experimental Hutch

EH 1: ✓ HARFD-XAS ✓ RIXS/XES ✓ XRS

EH 2: ✓ HAXPES ✓ Off-line HAXPES

5. Detectors and Instruments

Sample Stage

shoulder the important task of the times, Light up the light of technology **UHV chamber HEA** Ion Gun **1D&2D Detector** www.iasf.ac.cn

This beamline will be equipped with unique sample environments (high dc magnetic fields, low/high temperatures, high pressure).

High Pressure sample holder

Available analysers

Manipulator head with Flag type sample holder compartment

Shoulder the important task of the times, Light up the light of technology -

Phase retarder & Magnetic field generator

www.iasf.ac.cn

7. Potential applications

• Focus on the rare earth materials, magnetic materials, geologic materials et al.

7. Potential applications

HAXPES :2-12keV

Industrial application

Microelectronics

Battery

Catalysts

Fundamental research

- Probing Depth
- Chemical Analysis
- Electronic Structure
- Magnetic Ordering

Strongly-correlated materials

Thank you for your attention !

Contacts: Dr. Yang Email: <u>yangchzh6@mail.sysu.edu.cn</u> Phone: 13070246505

深圳市光明区新湖街道 圳园路268号A3栋 268 Zhenyuan St, Building A3, Floor 3-6, Guangming District, Shenzhen, Guangdong, P.R.China

