The 29th International Workshop on Weak Interactions and Neutrinos, Zhuhai 2023/07/07 Parallel talks 6: astro-particle physics & cosmology

Search for solar neutrino and low–mass dark matter with PandaX–4T

W. Ma et al. PhysRevLett.130.021802 S. Li et al. PhysRevLett. 130.261001

马文博 MA Wenbo wenboma@sjtu.edu.cn Shanghai Jiao Tong University

Introduction

- solar fussion neutrino
- interact through CEvNS (coherent elastic neutrino-nucleus scattering)
- deposits several keVnr in LXe

PandaX-4T Experiment

- 5.6 tonne liquid xenon detector at CJPL-II
- 2020-2021: commissioning run0, 100 days
- 2021-2022: tritium removal and run1, 160 days

CJPL-II 00 days n1, 160 days

Pushing threshold

- 2 or 3 hits among the entrie PMT array(169+199 PMTs)
- 65 PE of S2 (~3 electron)
- 0

Improvement on deadtime monitoring, signal reconstruction, and quality cuts

Waveform simulation

- Precise calculation for detection efficiency at each energy bin \bigcirc
- Detector-specified simulation for S1, S2, delay ionization, dark noise, etc with data-driven method \bigcirc
- Integrated with the real \bigcirc

Waveform simulation

- 0
- Reweighted, and consistent with low-energy neutron calibration \bigcirc
- Prediction for B8 is taken as nominal \bigcirc

Consistent with data on S1/S2 width, pattern, RMS, and other complicated variables

LXe light and charge yield uncertainty

- Nominal value fitted from WIMP 2021
- Uncertainty band from other experiments (NEST v2.3.6)
- Convert to counting uncertainty

Light and charge yield band

)21 'iments (NEST v2.3.6)

Uncorrelated analysis

Expected 2-Photon Events

.714	0.761	0.807	0.837	0.87	0.903	0.966	1.027	1.102
.814	0.905	0.945	0.992	1.011	1.08	1.102	1.166	1.216
.952	1.044	1.054	1.085	1.134	1.207	1.245	1.261	1.395
.067	1.143	1.155	1.206	1.244	1.269	1.341	1.407	1.504
.149	1.279	1.277	1.361	1.377	1.447	1.464	1.533	1.599
.315	1.376	1.416	1.486	1.508	1.562	1.6	1.682	1.725
.398	1.469	1.572	1.621	1.66	1.683	1.756	1.807	1.9
.561	1.651	1.777	1.795	1.85	1.901	1.931	1.98	2.084
.768 	1.913 	1.963 	2.014	2.077	2.172 	2.209 I	2.306 	2.433
0.1	0.2	0.3	0.4 Ly	0.5 / media	0.6 an	0.7	0.8	0.9

Expected 3-Photon Events

		0.1	0.2	0.3	0.4 Lv	0.5 v media	0.6 an	0.7	0.8	0.9
	0.1	0 .456	0.446	0.462	0.488	0.51	0.489	0.502	0.51	0.519
	0.2	0 .361	0.377	0.404	0.405	0.413	0.406	0.404	0.44	0.421
	0.3	0 .311	0.321	0.333	0.339	0.328	0.353	0.35	0.377	0.363
Ú.	0.4	0 .266	0.28	0.285	0.303	0.291	0.307	0.328	0.319	0.332
' medi	0.5	0 .237	0.243	0.259	0.25	0.27	0.283	0.294	0.271	0.296
an	0.6	0 .205	0.219	0.227	0.234	0.235	0.243	0.248	0.265	0.273
	0.7	0 .169	0.172	0.191	0.201	0.199	0.217	0.215	0.229	0.238
	0.8	-0 .152	0.163	0.163	0.166	0.181	0.187	0.205	0.204	0.215
	0.9	0 .115	0.125	0.132	0.14	0.149	0.162	0.168	0.16	0.188

Particle 4 GeV WIN B8 8 GeV WIN

Counting uncertainty

	2-hit	3-hit
•	uncertainty	uncertainty
MP	0.45	0.60
	0.29	0.39
MP	0.16	0.24

Background budget

- ER: LXe ER/NR discrimination
- NR: Different recoil energy spectrum
- Surface radioactivity: under control with the fiducial volume
- Accidental coincidence background is the real challenge

Two-hit channel S2 charge spectrum

Surface	Accidental coincidence	B8
0.14	62.43	2.32
0.08	0.79	0.42

Accidental background

- \sim Lower threshold \rightarrow increase background
- Rate estimation + sample from data \rightarrow prediction
- Check sideband prediction vs data, determine uncertainty

$$N_{\rm AC} = \epsilon_{\rm cut} R_{S1} R_{S2} T_{\rm drift}$$

- livetime Abdusalam Abdukerim et al 2022 Chinese Phys. C 46 103001

- R(S1): 6 kHz, picked from 1-ms-randomly-selected waveforms \bigcirc
- R(S2): ~ 1000 per day, are selected from 0.9-1.5ms offwindow \bigcirc
- Drift window: 760us \bigcirc
- Livetime: 64 days after more stringent deadtime cut \bigcirc

Sideband result

Number of Photons	Physical Events	Accidental Total Events Prediction		Data
1	9.4	2060.5	2069.9	2043
2	10.1	33.8	43.9	47
3	6.9	2.2	9.1	7

Accidental background

- Boosted decision tree (BDT): a classical machine-learning cut \bigcirc
- \bigcirc

Two photon AC prediction 62.43

Three photon prediction

AC 0.79

Input variables: related to charge, width, top-bottom asymmetry and PMT top pattern of S1 and S2s. • Training s/b: $O(10^6)$ 8B event waveform simulation vs $O(10^6)$ data-driven accidental simulation

0.29

Unblinding data

- Just one event was found
- 1-sigma downward fluctuation

_	Apply-BDT result						
	N-hit	Total bkg	B8	Data			
-	2	1.50	1.42	1			
	3	0.07	0.29	0			

Statistical interpretation

Clear likelihood function with just two-bins: 2-hit, or 3-hit

Uncertainties	2-hit bin	3-hit bin
quality cuts	0.14	0.14
light and charge yield	0.29	0.39
accidental bkg	0.30	0.30
BDT cut for signal	0.14	0.13
BDT cut for bkg	0.19	0.18
solar B8-v flux	0.04	0.04

Uncertainty mainly drived by event rate, AC model, and BDT cut

$$\mathcal{L} = G(\delta_{\epsilon})G(\delta_{s})G(\delta_{b})G(\delta_{\Phi})$$

$$\times \left[\prod_{i} G(\delta_{BDT,s}^{i})G(\delta_{BDT,b}^{i})\frac{\lambda_{i}^{N_{i}}}{N_{i}!}e^{-\lambda_{i}}\right]$$

$$\begin{split} \lambda_i^{\nu} &= N_{\nu} (1 + \delta_s f_i^{\nu}) (1 + \delta_{\epsilon}) (1 + \delta_{\text{BDT},s}^{i}) \\ &+ N_{\text{AC}} (1 + \delta_b) (1 + \delta_{\epsilon}) (1 + \delta_{\text{BDT},b}^{i}) + N_{\text{other}}, \\ \lambda_i^{\chi} &= N_{\chi} (1 + \delta_s f_i^{\chi}) (1 + \delta_{\epsilon}) (1 + \delta_{\text{BDT},s}^{i}) \\ &+ N_{\nu} (1 + \delta_s f_i^{\nu}) (1 + \delta_{\epsilon}) (1 + \delta_{\text{BDT},s}^{i}) (1 + \delta_{\Phi}) \\ &+ N_{\text{AC}} (1 + \delta_b) (1 + \delta_{\epsilon}) (1 + \delta_{\text{BDT},b}^{i}) + N_{\text{other}}, \end{split}$$

Final Constraints

Leading constraints on solar B8 CEvNS and 3-9 GeV WIMP \bigcirc

S2–only analysis and constraints

Use consistent dataset and techniques, perform analysis on S2-only channel

S2–only analysis and constraints

- Better DM-n and DM-e constraints at low-mass region

Use consistent dataset and techniques, perform analysis on S2-only channel

Summary

- solar B8-v CEvNS and low-mass dark matter.
- Stay tuned.

PandaX-4T commissioning run low-energy analyses yield world-leading sensitivity for

Low-threshold analyse techniques will be further employed in science run 1.

Questions

Backup

Data processing

- Low-level detector response is crucial for searching 8B \bigcirc
- Discriminate physical events out of noise \bigcirc
- Cuts suppress background \bigcirc
- 0

Deadtime Effect

- ~ 3% Bad data files with excessive noise
- 7 live days with excessive micro-discharge
- High-charge period induced by tail of large signals

Waveform simulation

- S1: sampled from neutron-calibration S1
- S2: formed by data-driven single electrons with proper diffusion width
- Data-driven delay ionization, noise, dark rate, and after pulse \bigcirc

Unblinded event

N _{hit}	S2 range (PE)	BDT	ER	NR	Surface	AC	Total prediction
2	65–230	pre post	0.04 0.02	0.10 0.04	0.14 0.03	62.43 1.41	62.71 1.50
3	65–190	pre post	0.01 0.00	0.05 0.02	0.08 0.03	0.79 0.02	0.93 0.07

_

Physical background

