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PU mitigation at hadron colliders

Total integrated luminosity (fb~!)

CMS ™ LHC Delivered: 224.25 fb™*
CMS Recorded: 206.76 fb~!
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At the LHC, usually interested in rare,
head-on pp collisions

Maximize probability of head-on collisions by
squeezing the proton bunches as much as
possible

Keep instantaneous luminosity high

High integrated luminosity = better
physics outcome

Drawback: non-negligible probability of
having more than one pp collision per
bunch crossing
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PU mitigation at hadron colliders
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Pileup: additional pp collisions
superimposing to main collision

PU has increased in Run3 ((nPU) = 50)
and will increase in HL-LHC ((nPU) = 140)

Will severely degrade quality of
observables (jet multiplicity, jet
substructure, ...) if not properly treated

Easy task for charged particles: use
tracking information to disentangle particles

Very challenging for neutral particles
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How bad is pileup?
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State-of-the-art at CMS: PUPPI [1407.6013]
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Starting from Run3, default PU mitigation technique in CMS is PUPPI

Rule-based algorithm
Calculates a weight w € [0, 1] for each particle in the event

o Encodes the probability for a particle to be LV or not
o Weight used to reweight the particle 4-momentum before jet clustering

For charged: use tracking information and assign 0 or 1

For neutrals: build « variable

a; = log Z

j;éi,AR,'j<R0

QCD is harder and more collimated than PU = higher o than PU
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|nil < 2.5 jare all charged particles from LV

|ni| > 2.5 jare all kinds of particles
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State-of-the-art at CMS: PUPPI [1407.6013]
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To translate into a weight, compare each particle’s « with the mean and RMS
of PU particles
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signedx? = (as{\fs)z .
Use charged particles for apy and (aBM°)? computation S
Finally, assume signedy? follows a x? distribution and assign weight based on I
CDF
w; = FX2,NDF:1(5ignedX2)
LV particle — large signedy? = large CDF — large weight R:SMS
PU particle — small signedy? — small CDF —> small weight
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State-of-the-art at CMS: PUPPI [1407.6013]
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PileUp Mitigation with Machine Learning: PUMML

[1707.08600]
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o Treat jets as squared images,
use CNNs
o Input is a three-channel image
o Charged radiation from LV
o Charged radiation from PU
o Total neutral radiation
o Output is regressed neutral
radiation from LV

o Image-based approach
overlooks complex detector
geometry
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PUPPI with Machine Learning: PUPPIML [1810.07988]
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o PUPPI is based on local information: use GNN to collect it in more B
expressive ways el
Results
o Developed at Delphes particle-level (before interaction with the detector) QCD et
o Fully supervised: use truth-labels coming from Delphes simulation e
o These are not available in full Geant4-based simulations! Conclusions
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Semi-supervised PUPPI [2203.15823]

(

Node-level gate

o PUPPI is based on local information: use GNN to collect it in more
expressive ways

o Developed at Delphes particle-level (before interaction with the detector)

o Semi-supervised: train on charged (labels exist in Geant4 as well), apply on
neutrals

o Can train on data, but requires extrapolations (charged — neutrals, central
— forward)
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Overview of PU mitigation techniques

o Currently in use (e.g., CMS): PUPPI [1407.6013]
Rule-based algorithm

o For each neutral particle, consider the energy of neighboring particles
o Extract a probability for the particle to be LV or PU
o Relies on properties of charged particles and extrapolates to neutrals
o Nature and complexity of task inspired machine-learning-based approaches
o PUMML: treat jets as images, reconstruct LV neutral radiation [1707.08600]
o PUPPIML: use GNN, rely on Delphes truth labels [1810.07988]
o Semi-supervised PUPPI: train on charged, apply on neutrals [2203.15823]
o Recurring problem: lack of truth labels for neutrals in full simulation
o We developed a new ML-based approach to overcome this bottleneck

o Use Attention-Based Cloud Network (ABCNet, [2001.05311]) combined
with optimal transport

o TOTAL: Training Optimal Transport with Attention Learning
o Train model on a Delphes-based simulation of the CMS Phase2 detector
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Attention-Based Cloud network

o ABCNet is an graph neural network enhanced with attention mechanisms
o Treat particle collision data as a set of permutation-invariant objects
o Attention mechanisms filter out the particles that are not relevant for the

learning process
o Implemented inside custom graph attention pooling layers (GAPLayers)

Encoding
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Attention mechanism

o Add together self- (x/) and local- (y;) coefficients
and apply non-linearity

Gj = LeakyRe|U(Xi/ + y’;)

o Align coefficients c;; by applying SoftMax

) exp(cy)
Y Y exp(cik)
Attention o Get attention coefficients by multiplying y;; by cj;

% =Relu | > ¢y
J

TOTAL PU
mitigation

F. lemmi

Introduction

PU miti

hadron

on at

PUPPI
PUMML
PUPPIML

SSPUPPI

TOTAL PU
mitigation

General idea

Conclusions

F. lemmi (IHEP) TOTAL PU mitigation November 17, 2022 13 /32



A novel approach to PU mitigation

o Definition of truth labels is highly non trivial in simulations at hadron colliders tetion.
o Our approach: simulate identical proton-proton collisions in two scenarios T
@ Only the hard interaction is simulated: no-PU sample
@ Pileup is superimposed to the hard interaction: PU sample ntreduction
o Do not assign per-particle labels: rather just assign a “global” label to

PUMML

samples -

o Train network to learn differences between the two samples s
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How to learn: OT concepts for a loss function

o We build a custom loss inspired by
optimal transport ideas (OT)
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o OT example: the Earth Mover’s F. lemmi
Distance is the minimum work to move introduction
earth to fill some holes ; 3

PUMML

SSPUPPI

EMD()?7 _)7) = mfin V‘/(f7 )?7 _)7) PUPPIML
TOTAL. PU
o With OT you can match distributions """
(e.g., earth-holes)

Model

o We want to match the distributions for  resuis
the no-PU particles and PU particles
weighted by an ABCNet weight (&)
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Limitation of the EMD loss function

TOTAL PU
H - t t
o Using the EMD loss comes with e
. . . F. lemmi
some limitations
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We consider 9000 particles per event

Introduction

©

High computational cost: feasible

. o flows f are 9000x9000 matrices PUMML
o Can only match 3D distributions i
H™ TOTAL PU
. ® o o We worked on a modified loss to e
PY o Match higher-dimensionality e
. distributions Vol
® Qo SOlVe OT efﬁciently Results
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Efficient OT: sliced Wasserstein distance (SWD)

TOTAL PU
o The optimal transport problem has a closed form for 1D problems: gty
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Wc(PX, py) = /0 C (P)? (’T), P; (7‘)) dr |I7Lr?duc“tywno‘y:

PUMML

where px, py are 1D PDFs, Pi!(7), Py, !(7) are the respective CDFs and e

SSPUPPI

c(+,-) is the transportation cost function

TOTAL PU
o No guarantee that the integral is solvable (it depends on the form of c(-,-)) mitigation
o The integral can always be approximated by the finite sum B
Results

1 M P—l P—l o 2m—1 f:w mul n":
Mm21C( X (Tm)’ Y (Tm))v Tm = M :
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(B (m), yl(Tl))l

o me{1,2,3,4,5} = 7, =20-1¢{0.1,03,0.5,0.7,0.9}




Efficient OT: sliced Wasserstein distance (SWD)

o In the special case of discrete distributions (discrete in nature, or resulting
from a sampling), PDFs are sums of Dirac's deltas

M 1 M
Z X=Xm)i Py =5 D 00y = ym);
m=1 m=1

o The integral of a Dirac’s delta is the Heaviside's step function © —
—> CDFs are Heaviside functions

PX(t):/_t pu(z /\/]/ Zéz—xm Yz = = Z@ t — Xm)

o If we sort the samples by feature, the CDFs become a sum of steps
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Example: M =5
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Efficient OT: sliced Wasserstein distance (SWD)
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o The 1D OT problem is reduced to a sorting of the 1D feature
o Fast and easy to solve
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Efficient OT: sliced Wasserstein distance (SWD)
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@ Optimal transport problem has a closed form in 1D e
@ For sampled distributions, the problem is reduced to a sorting of the 1D feature o

@ Particles have multi-dimensional distributions though. How to apply this?
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Efficient OT: sliced Wasserstein distance (SWD)

o Each particle is a sample from a n-D Trrf?;li-gal_ti:r?
feature space o Now can solve the 1D OT F. lemmi

o SWD: take n-D feature space and problem for each slice Tiredivattn
project (slice) it to 1D o Sort particles by slice

o Project on a vector belonging to S"! o The average on all slices and PuMML

o For robustness, take multiple random particles becomes the loss function
slices I

Sorted Ry, p1 in R o fneton S0

/ Results

. . QCD multijet
Linear Task-Specific s
Projection Sliced Wasserstein Discrepancy ot "
\ Robu ss

Conclusions
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Energy conservation in OT: MET constraint

o SWD focuses on the optimal matching between individual particles in no-PU
and PU samples

o No guarantee that energy is conserved between the two
o Add an event-level MET constraint term to the loss
o Enforce energies in no-PU and PU events to be similar

o Final loss function:

[ OT = SWD(R, - @, %p) + MSE (MET(%, - &), MET(%,p)) ]

where X, = PU sample; X,, = no-PU sample; MSE = mean squared error
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The model

Post-aggregation layers

GAPBIock 1
(=16, k=20, h=1)

Neighbors features 1 Graph features 1
|
ConviD
=6k te=13=1)
|
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~ Aggregation
GAPBlock 2
(=4 k30, he1)
~ ~
Neighbors features 2 Graph features 2
|
ConviD
(=stmsols=1)
|

ConviD
(=256 46 = 1,5 = 1)

Aggregation layers

©

©

©

©

©

9 input features:

(pt. m, ¢, E)

Charge

PDG ID

dXY & dZ impact parameters
PUPPI weight

Loss: SWD(X, - &, Xnp) + MET
constraint

©

0000

Cost function: squared distance
Sliced features: (pt, 1, ¢, E)
Output: per-particle weight &

o Train on 300k events, equally split between QCD multijet, tt dileptonic and

VBF Higgs(4v) processes

o Consider 9000 particles per event (zero-padding included)
o Gather the 20 k-nearest neighbors for each particle when building graph
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The model

Post-aggregation layers

o Compare TOTAL with PUPPI
and no-PU scenario

GAPBlock 1
(6= 16, k=20, h=1)
e ~

Neighbors features 1 Graph features 1
|
ConvD
(=shiemLs=1)
|
ConviD

(=shlo=ts=)—0
o Aggregation

GAPBlock 2
(= o4, k2 he1)
AN

o Reweight each particle's
4-momentum by the network
weight

o Cluster TOTAL jets and
TOTAL MET

Neighbors features 2 Graph features 2
|

ConviD
(=stls=1s=1)

ConviD
(=256 6 = 1,5 = 1)

Aggregation layers

o We define the resolution as:

5= 475% — q25%
2

where gxo, is the X-th quantile of the considered response distribution
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Results: QCD multijet
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Results: dileptonic tt
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o Jet energy resolution as a function of jet pt (left) and jet n (right)
o Improvement up to 40% in JER, up to 40% in 7 resolution
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Results: dileptonic tt
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Inspecting particles weights
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Robustness
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o Evaluate resolution on processes and PU scenarios unseen during training .
o Network is trained on QCD+tt+VBF with (NPV) = 140 S
o Evaluate on W+jets production, flat NPV between 0 and 200 Conclusions
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We presented novel algorithm to reject PU particles at high-intensity
hadron colliders

o Trained and tested on Delphes simulation of Phase2 CMS detector
We are Training Optimal Transport with Attention Learning: TOTAL
We solved the longstanding problem of neutral labels in PU mitigation
We do not rely on explicit, per-particle labeling
Learning happens through OT in a self-supervised fashion

Such an algorithm will be crucial at the High-Luminosity LHC, where much
harsher data-taking conditions are expected
Our approach can be generalized to a wide range of denoising problems

o Only needed input is a reliable simulation of signal and noise
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