Plan of the peak finding algorithm development for beam test data

Guang Zhao zhaog@ihep.ac.cn

Recap: NN algorithm

Price need to be paid:

- A. The performance relies on the quality of the labels
- B. The training sample and the testing sample should have quite similar distributions

This not an issue for MC simulations → Both A and B can be satisfied But always a big challenge for data analysis.

Strategy for data analysis

- Strategy 1: Train with MC, and apply to data
 - Advantage: Full labels for a supervised learning (A $\sqrt{}$)
 - <u>Challenge:</u> Require excellent data/MC consistency (B ×)
 - Need to tune the MC in several aspects:
 - Electronics responses
 - Noises
 - Space charge effect
 - ...
- Strategy 2: Train with data, and apply to data
 - <u>Advantage</u>: Do NOT rely on data/MC consistency (B $\sqrt{}$)
 - <u>Challenge:</u> Need to add reliable labels (A \times)

Strategy 1: Train NN with MC

Strategy 2: Train NN with data

- Test beam data file # 29, ch 11
 - Gas mixture: He/iC4H10 = 80/20
 - Sampling rate: 1.5 GHz
 - HV tag: 10
 - Angle: 0

20 µm	20 μm HV15		20 μm HV7	20 μm HV1	20 µm		20 μr HV8
15 μm HV23		:	25 μm HV18	25 µm		15 μm HV21	

corvico	chaco
JCI VICE	space

20 µm		20 µm		20 μm ΗV0		20 µm	
25 μm HV11	25 μm HV10		15 µm	15 µm	15 HV	μm 22	15 μm HV13

DRS channels	HV channels	Tubes				
0	0	1.5cm-20μm				
1	15	1.0cm-20µm				
2	22	1.0cm-15µm				
3	13	1.0cm-15µm				
4	18	1.5cm-25µm				
5	7	1.0cm-20µm				
6	1	1.0cm-20µm				
7	21	1.5cm-15µm 1.0cm-20µm				
8	8					
9	11	1.0cm-25μm 1.0cm-25μm				
10	10					
11	23	1.5cm-15µm				
12		Upstream scintillator up				
13		Upstream scintillator down				
14		Downstream scintillator up				
15		Downstream scintillator down				

		HV tag						
		5	6	7*	8	9	10	11(+10)
Tubes	HV channels	Volt (V)						
1cm-15mum	13.22	1500	1580	1580	1580	1580	1580	1590
1cm-20mum	1,7,8,15	1550	1620	1620	1680	1670	1670	1680
1cm-25mum	1011	1600	1690	1690	1750	1740	1740	1750
1.5cm-15mum	21.23	1650	1650	1650	1650	1830	1830	1840
1.5cm-20mum	0	1700	1760	1760	1780	1750	1770	1780
1.5cm-25mum	18	1830	1830	1830	1830	1830	1830	1840

Pre-selection

The points marked in the figure are local maximum points and inflection points

Pre-selection

- For better demonstrate the algorithm:
 - Require at least 6 rising edges whose amplitudes are within 0.01 and 0.03 mV

Labelling the data

Intuition: Using derivative algorithm to guide the labelling

<u>Tight signal:</u> D1 threshold > 6E-2

Loose signal: D1 threshold > 4E-2

Labelling with large confidence:

- Signal: Tight signal
- Background: COMPLEMENTARY of loose signal

Model and training

- NN model:
 - LSTM layers + full-connected layer + sigmoid output

• Training:

- First 800 waveforms in file # 29, channel 11
- After 20 epochs: 98.4 % accuracy

Testing

- Very preliminary results by apply the NN to waveforms after index 800 in the same file
- Need more investigations

Conclusion

- Strategy 1: Train NN with MC
 - Need to tune the MC \rightarrow input from data

• Strategy 2: Train NN with data

- Find a way to labelling the data
- Investigate more possibilities with the NN models

Should work in both directions