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Why do we care about Feynman integrals*?

Higgs physics Binary system of black holes

*Feynman integrals don't have to do with diagrams. Here it is for convenience.
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Why do we push to such higher loops?

 Required by (more) precision phenomenology (?)

* Apart from experimentally excited datas (more precise datas or new particles...), we still need to
accumulate theoretical datas

= theoretical "lab" for more general Fls/amplitudes:
v banana family is one of the hydrogens of Fls, like supersymmetric Yang-Mills to QCD
= a probe for new tools and methods
v two-loop banana family is the simplest FlI beyond multiple polylogarithms (MPL);
v’ three-loop banana case is the simplest Fl beyond elliptic multiple polylogarithms (eMPL);
v four-loop banana case is the simplest Fl involving a general Calabi-Yau manifold;

v' geometry-inspired methods and tools apply to more general Fls!



What is the (equal-mass) banana family?
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Warm-up: one-loop banana
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v The vector basis has two independent components: Fl(lg and Fl(ll):

e.g:(4+1/y)-F)=(1+2¢)-F)+eF).

v Dependenceony = — mz/p2 Is controlled by the DE for the two Mis:
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Warm-up: one-loop banana




Toy model for e-form
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Toy model for e-form and iterated integrals
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V' Iterated integrals have some nice algebraic and geometric properties;

V' They suit perfectly as solutions of differential equations.



Take-home message

© Differential equations are very powerful to calculate Feynman integrals. Once ¢ form is obtained, the

problem is fairly solved;

© The € form is achieved by variable change + rotation of the basis.

What follows

© Essential ingredients to € form is fixed by geometry;

o The methodology holds to all loops of banana integrals!
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Geometry behind /-loop equal-mass banana
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The hypersurface, as variety from the second graph polynomial X = { [al Ly e al+1] e CP! | F(a) = O},

is smooth and defined as Calabi-Yau (/ — 1)-folds. A Re(w)

o two-loop: Calabi-Yau 1-fold — an elliptic curve /

» three-loop: Calabi-Yau 2-fold — a K3 surface N
» four-loop: Calabi-Yau 3-fold N—
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Geometry behind /-loop equal-mass banana

e e — e I — — e Im

© A Calabi-Yau manifold, M, of complex dimension 7 is a compact Kahler manifold with vanishing Ricci

| curvature. It is uniquely characterised by a triple: /\
| define complex structure (M Q2 a)) Kahler form: metric

~

H
|° Example: (&, dz/w, dz A dw);

o For a Calabi-Yau manifold M, there exists a mirror manifold W, whose complex structure and Kahler
structure are exchanged.

|
|
| |
|

AFor our purpose, it is defined by the hypersurface from the homogeneous (second) graph polynomials

EJ'(O‘D s+ Ay 1)- Y

— — ——— ——— ———— —— — — — — — ————— —— ——
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Basic concepts of (banana) Feynman integrals

K Dependence In y is the most Compllcated W|thout any aII order Clalm

|

;j . Dependence In € is at most meromorphlc
o Around d = 2 dimensions, no UV/IR divs;
o DlmenS|on shift relatlons

.1 * The dependence is controlled by the differential equation w.r.t. y; ‘l

| Normally, DE |s burlt with I\/Ils | e., prolected upon ak baS|s

v _ _ _ o
3 — _
4 4 . Integratlon by parts (IBP) glven a famlly, there are onIy f|n|te number of mtegrals
called master integrals (Mis), constituting a basis in the lattice space; 1]
3 |
| * Intersection theory, GKZ, Griffiths reductlon method etc.
2 _= e
»
o 1 & 3 4 V, See 2201.03593 for a review of these aspects and references therein.

13



Basic concepts of (banana) Feynman integrals

dF O, y)

= A(e,y) F (e, y)
dy

rotate the basis | (gauge transformation) variable change | (coordinate transformation)

/ F' =UF \ / y' =n) \
U-!

v

dy

d
A'=UAU '+ U— A=A
\ dy \ dy’ J

dF O e, -
(&, )) = A(Y) FY(e,y) e-form
dy i

dF" ()
dy

FOe,y) = e"FO"(y) = A(y) FO"=1 (y)

n

[Remiddi '97; Gehrmann and Remiddi '00; Henn '13] + so many applications: a revolution in precision era
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Multiple polylogarithms (Generalised polylogarithm)

d;

v MPLs are iterated integrals with all letters a simple rational function: f.(z) = :
Z— X

V' Geometrically, they can be seen as iterated integrals on a (punctured) Riemann sphere.

G(z2) =1,
rZ le

Jo <1 — X1

G(xl,xz...,xn;z) = G(xz...,xn;zl).

I(f1, 12, 135 20, 2)
DJ2 /3200 for example, G(0;z) = Inz, G(0,1;z) = — L1,(2).

Goncharov, '98, 01'
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Two-loop banana: sunrise

" ddk, d, 1
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The basis constitutes of three Mls: F 1(21) 0 F 1(21) " F2(21) I where the last two are not MPLs;

The geometry behind is an elliptic curve (equivalent to a torus, Calabi-Yau 1-fold), which has genus 1;
The solution space of the DE of this family is iterated integrals on (punctured) torus, i.e., eMPL,;
In the equal-mass case, they reduce to iterated integrals of modular forms.

dz " dz
l//() — B lljl — B
W w

71 72
E: w =47+ g7+ ;.

kl—i_kQ_pam
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Three-loop banana

e Leading term in & [Bloch, Kerr, Vanhove, 1406.2664]

» e-factorised form by maximal cuts [Primo, Tancredi, 1704.05465]
* Master integrals in d=2 in terms of eMPLs [Broedel, Duhr, Dulat, Marzucca, Penante, 1907.03787]
 DEQ with meromorphic modular forms [Broedel, Duhr, Matthes, 2109.15251]

» Part of larger |-Loop banana program [Bonisch, Duhr, Klemm, Nega, Safari; Kreimer; Forum, von Hippel]

» e-factorised form with meromorphic modular forms [P6gel, XW and Weinzierl, 2207.12893].
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Four-loop banana

* Calculation in position space, at special points, numerics[Groote, Korner and Pivovarov, hep-ph/0506286]

* Part of larger |-Loop banana program, details about Calabi-Yau geometry behind[Bonisch, Duhr, Klemm,
Nega, Safari, 1912.06201, 2008.10574, 2108.05310]

* On the cut banana graphs [Kreimer, 2202.05490]

* On symbols and coaction [Forum, von Hippel, 2209.03922]
» e-factorised form [Pogel, XW and Weinzierl, 2211.04292].

e [Candelas, De La Ossa, Green, Parkes '91]

e [Morrison '91]

e Batyrev and van Straten '93]

* [Almkvist '06]

 [Bogner, 1304.5434]

« Calabi-Yau operators, [van Straten, 1704.00164]

» Calabi-Yau operators of degree two [Almkvist, van Straten, 2103.08651]
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[-loop banana

* Part of larger |I-Loop banana program, details about Calabi-Yau geometry behind[Bonisch, Duhr, Klemm,
Nega, Safari, 1912.06201, 2008.10574, 2108.05310]

 Bananas of equal mass: any loop, any order in the dimensional regularisation parameter
[Pogel, XW and Weinzierl, 2212.08908]

* The ice cone family and iterated integrals for Calabi-Yau varieties [Duhr, Klemm, Nega and Tancredi, 2212.09550]

 [Bogner, 1304.5434]
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[-loop banana

" d%k,  d%, 1

] igdl2  jdl2 [k12 _ mz] b [k22 - mz] Uz[(kl n k[ _p)2 . m2] Vi

D(g—9 _ _ ey (o 20\DI-1d12
Fz(d—Z 2e,y) = e“'E - (m°)

« There are [ + 1 master integrals, upon which any integral in this family can be projected:

(0) (4) (4) ORI AN
F11---1o’ F11---1’F21---1’F31-.-1’ ’Fll---l’

* These Mls constitutea (/ + 1) X (I 4+ 1) linearly coupled differential equation.
« The geometry behind is a Calabi-Yau (/ — 1)-folds, [ periods.

« As aa Calabi-Yau ([ — 1)-folds, there exists a no-where vanishing holomorphic differential

form €2, such that periods are related to y; = J (2, but it is not even simple to explicitly

Vi
define independent cycles in general.

 |nstead, we resort to Picard-Fuchs differential equation of periods.
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[-loop banana: Picard-Fuchs operator

© The period integrals y; = J (2 related to the geometry are annihilated by the Picard-Fuchs operator
Vi
LY, e =0y, =0,i=0,1,-,]-1;

© This operator z(l)(y, ¢ = 0) is a Calabi-Yau operator [Bogner,'13], which has very nice properties:

1. Around y = 0, the solutions has maximal logarithmic series as:

] Iy & N
. = - a_.n n ,0, EN
i (2m‘)zZ i 2;5 ke o = T

j=0
2. Mirror map (canonical variable change): g = exp [2m’ l//l(y)/l/fo(y)], q(y) & y(qg) are N-integral;

3. The operator is self-dual: There exists a function a(y) such that:

l .
A A . d‘]
al* = La, with L* = Z (=1 —rj(y,()).

j=0 ay’
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Mirror map and operator factorization

O Mirror map is related to mirror symmetry of Calabi-Yau manifolds. Calabi-Yau [-folds come in pair, whose
complex structure and Kahler structure are exchanged.

2 3

= . POy, e =0) x 1
e e 4l 0 () 0y e — 0) o 0
Cy=q?+4 () +10(¢?)’ +20 (¢@) +0< q(2>)5> , ’ q
7 (2) — :
421 ) +68 (49)* + 0 () oo ETOe=0) ety b
) 5

(

(
y=q+6(g®

(

0

0 . A
y=q®+8(g®)’ +36 (¢¥ (q®) ) \ dq  2nmidr » L(3)(y, £ =0) x Qq : Qq : gq
_ ) (5)\ 2 (5))3 5)\* ) A 1
y=q9+10(q9)"+55 (¢9)"+340 (¢%)" + 0 ((¢)’) iYy,e=0)x6,-0,-—-0,-0,
vy =q©+12(¢®) +78 (¢©) + 604 (¢©)* + 0 <(q<6>)5> ¥,

[van Straten, 1704.00164]
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O

[-loop banana: Y invariants

Define recursively operators N] by:

. d 1 N o
No=1, Niyyy=y —N,, (N-(t/fl-)=0,z<1>;

Structure series (ay, &y, **+, 0_1):

Y-invariants:

Self-dual implication:

Explicitly, one can verify that
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[-loop banana: e-form Ansatz

O i(l)(y,O) annihilates Fl(ll) modulo & and modulo tadpole;

Fiy..
Yo

o1

© Mirror map tells us to use the canonical variable 7 or g:

O e ——y

Y dy 2midr v

© Factorization of i(l)(y,O) suggests we include pre-factors for all the others apart from some unknown rotations
coefficients:

1 |1 d ol
S | =— | =J(v)—1I | — E Ji
l Y1—1 - (y)dy I—1 — k

© By requiring dl = EA(T)Z we have some constraints:

¥ Constraints on yy, Y] and J are automatically satisfied;

@ Constraints for sz can be solved systematically by considering self-dual symmetry.
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[-loop banana: e-form Ansatz

Iy o o 0o 0 0o 0 o\(I

I 0o E, 1 o o o o]y

I, 0 Fyy Iy Y, 0 0 011 1,

1 d| L _. VR T O TR £ 0 011 L
2ride | 1, ;o : e ] o,
: O Faon| Fup Fuaz - Yo 0 :

Iy O Fom Faorp Fu-nz - Foepe-ny 1|12

[; f; * * : % % I

© Removing £-dependent terms in the last row results in some constraints for Fij;

O The constraints can be dramatically simplified by observing that self-duality requires that coloured
elements are the same respectively, just like Y invariants, resulting in some algebraic relations:
= Aij = A(l+1—j)(l+1—i)9 1 <1,7j< 1.
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[-loop banana: Boundary and final results

o The boundary terms to all orders are easy to obtain with help of Mellin-Barnes techniques:

1) T+ 67T - )Y + je)
v .

[
— (__1\[+1 leyg 1V
I1,_o= (=D + e yg‘;< 1>f<j ST

O Final results are expressed in terms of iterated integrals, e.g., 11(6) = 8611(6’6) + 8711(6’7) + -

169 = 1120¢2 = 201685, — 3360851 (1,3, ¥s) + 1 (1,Y5, Y, Yo, £ )

= 11208 = 5605, — 201651, + 7L +210q ( ~32¢; + 48¢L, — 3L} +8L7)

105 2<zogg — 139201, + 87L4 — 5213 — 18012 — 72L, + 192) + 0(g%)
' ) q 3 3™~q q q q q q

© The geometry for six loops is a Calabi-Yau 5-folds!
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[-loop banana: comparison

i Re [M4]
200000~ OO | e Im [M;]
i )
O A A -4 A
A,
- I A,
-200000
-400000 -
-600000
! I L L L L L L L L L L I L !
-200 -100 0 100 200 300 400
X =p2/m2

-
—‘

______

"
‘—
-

—"
-

1.5x107 .
I Re [M;]
----- Im [M]
1.0x107
_ 5.0x10°-
; i
0 A A
D
_5.0x10° "
| \ | | | | \ | | | |
~-200 ~-100

o Agree with pySecDec. Our evaluation of the curves takes seconds;

© The convergent range around y = 0 at six loops is | p?| > 49m?.
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Conclusion and outlook

Feynman integrals related to Calabi-Yau geometry interest the community from several aspects;

We solve [-loop equal-mass banana integrals, whose geometry is Calabi-Yau (/ — 1)-folds;

Geometry-inspired methods play an essential role, and we believe geometry should be guidance for other

Feynman integrals as well;

We put one more highly non-trivial evidence to the conjecture that all Feynman integrals may have an € form.

Analytical continuation to other singular points;
Push to multi-parameter cases, e.g., unequal-mass banana integrals;

What exactly are the letters beyond three loops? Automorphic forms?

Thank you !
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Constraints @ 4 loops

There Is extra non-linear constraint for the period at 4 loops, but it will show u again at 5 loops!

/! / 2 PN / 21 / / i /
83 _2(8) _p|2 4(0)1) P T | Y S L S
g3 3\ & w; 3 \w /)| 3\ g w; )| o, x x—-1 x-9
1 | 1] 1 1 1 2 (x—=17)9x-29)

x=25 3lx=12 @®=-92 (x=252 x2 (x-25(G-9(x-Dx]|’

F;{+<3£-2g—é)Fgl |- 62 6(60{)2—1(3], gé)
J & L o SN\ g
2(5x% - 112x2+492x—225)'F, T, (1 2 2 2 ) w|"
(=25 — 9)(x — 1)x2 _ b x x—1 x-9 x-=25
3(20x — 315x% + 518x +225) @)  2(35x2—357x+246) o

(x —25)(x —9)(x — 1)x? w; (x—=25)x—-9)(x— 1)x? w, _

271 | W]

= 0.
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Calabi-Yau manifold

Definition:
A Calabi-Yau n-fold is a compact Kéhler manifold X of complex dimension n, equiped with a Kéhler (1,1)-
form w, and satisfying one of the following equivalent conditions:

1. The first Chern class of X vanishes (over R)

2. X has a Kahler metric with vanishing Ricci curvature.

3. X has a holomorphic (n,0)-form €2 that vanishes nowhere.
4. The holonomy group of X is SU(N).

5. A positive power of the canonical bundle of X is trivial.

6

. X has a finite cover that is a product of a torus and a simply connected manifold with trivial canonical
bundle.

7. The canonical bundle of X is trivial.

* Forms €2 and w are both characteristics for X, such that they are normally put together: (X, 2, w),
e.g., an elliptic curve: (&, dx/y,dx A dy).

* Roughly speaking, CY manifolds live between simple and general varities.
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Yukawa coupling

Definition 1:

CY (I — 1)-fold: from

B = 4 p S 4 L N e
£,X) = — (X vee, > = ——p;,_ (xX)C;_(x).

l Tl Pi-1 Tl T ll?z 1 -1

Definition 2:

W, = nQ dkgz —HTdeH— 0 k<i-1, \W3—K K(q) = K(x)J(x)
(= | QOAZZOW =TS g ll=q o 1 o = KW — K(g) = Ko’

XX
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Elliptic curve from graph polynomial

3 3e
U(a)
(2) — J2eyp . . 3 . .
i = e - I'(1 + 2e) J d a5(1 izzlal) F (@)

a;>0
U(a) = a0 + 05 + 03
F(a) = xa,0,05 + (o) + a4, + 03)U(a)

& = {[(xl Q] € Cl]j’2|xa1a2(x3 + (a1 + a, + a3) (al(xz + o, + a3a1) = O}
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Elliptic curve from maximal cut

Maximal cut:
* By sending all propagators on-shell, i.e., replacing with delta functions.
* Usually, maximal cut contains the most essential information of the integral family.
* Around 2-dimension, there are three delta functions fixing three integration components,
leaving one unintegrated.

(2) _
MaxCut F1 1=

(27i)’ dz
T2 [
Brr o \/ 2(z+4) [22 + 2(1 —x)z+ (1 + x)2]

& v =uu+4)|u*+2(1 —x)u+ (1 +x)7|.

F O(¢)
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e=-form for the sunrise

_ .22
ly=¢ F110
2F1(%)1 ; I 0 0 O
d dt
] I, Hs Ha Mo

Adams, Weinzierl '17
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