

UPC物理研讨会 上海 复旦大学

2023年5月26-28日

1

UPC Quarkonium Production at LHCb

Hengne Li

(South China Normal University)

on behalf of the LHCb collaboration

Hengne Li

Hengne Li

CEP in Ultra-peripheral collisions

- Ultra-peripheral collisions (UPC): Two nuclei bypass each other with an impact parameter greater than the sum of their radii
- Photon-induced interactions are enhanced by the strong electromagnetic field of the nucleus
 - Coherent J/ψ and ψ(2S) production gives constraints on the gluon Probability Density Functions,
 - (J/ψ) / ψ(2S) ratio measurement is helpful to constrain the choice of the vector meson wave function in dipole scattering models [e.g. PLB 772 (2017) 832, PRC (2011) 011902]

Pb

Coherent J/ ψ production: photon interact with the whole nucleus coherently

Incoherent J/ ψ production: photon interact with particular nucleons in the nucleus

Pb

Pb

The LHCb detector

- LHCb is the only dedicated detector (at LHC) fully instrumented in forward region
- Unique kinematic coverage **2** < η < 5
- A high precision device, • down to very low-p_T, excellent particle ID, precise vertex and track reconstruction.

Hengne Li

UPC物理研讨会 2023年5月26-28日 上海 复旦大学

3

LHCb running modes and kinematic coverage

Both the collider mode and fixed-target mode running at the same time

Collider mode datasets:

	20	13	20	16	2015	2017	2018
$\sqrt{s_{NN}}$	5.02 TeV		8.16 TeV		5.02 TeV	5.02 TeV	5.02 TeV
	pPb	Pbp	pPb	Pbp	PbPb	XeXe	PbPb
${\cal L}$	$1.1 { m ~nb^{-1}}$	0.5 nb^{-1}	13.6 nb^{-1}	20.8 nb^{-1}	$10 \ \mu b^{-1}$	$0.4~\mu\mathrm{b}^{-1}$	$\sim 210 \ \mu \mathrm{b}^{-1}$
	'						

Kinematic acceptance

Event selection

z = 114.0m

- Dataset: PbPb collisions in 2018 at 5.02 TeV, $228 \pm 10 \ \mu b^{-1}$
- Cross-sections of coherent J/ψ and $\psi(2S)$ photon-production are measured as:

$$\frac{\mathrm{d}\sigma_{\psi}^{\mathrm{coh}}}{\mathrm{d}x} = \frac{N_{\psi}^{\mathrm{coh}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) \times \Delta x}$$

- Event selection:
 - require a near empty detector with only two long tracks reconstructed, with acceptance cuts:

2.0 <
$$\eta^{\mu}$$
 < 4.5 , p_{T}^{μ} > 700MeV,
 $p_{T}^{\mu\mu}$ < 1GeV, $\left| \varDelta \phi_{\mu\mu} \right| > 0.9 \pi$

HERSCHEL

• HERSCHEL detector [JINST 13 (2018) 04 P04017] is used to further purify the selection

Signal extraction (1)

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP

υ

Dimuon mass fit

- Charmonia yields are extracted from dimuon mass fit
 - Double sided crystal ball function for the J/ψ and $\psi(2S)$ signals
 - Exponential for the non-resonance background (mainly $\gamma\gamma \rightarrow \mu\mu$ process)

Signal extraction (2)

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP

- Coherent production signal is extracted from a $ln(p_T^{*2})$ fit
 - Coherent, incoherent, and feed-down shapes modelled using STARLight + EvtGen + PHOTOs + GEANT4 Simulation
 - Non-resonance shapes determined from data side-band

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP

 \mathbf{D}_{a}

 Integrated cross-section and ratio (most precise measurements in the forward region at the moment):

0-----

 $\sigma_{I/\psi}^{\text{coh}} = 5.965 \pm 0.059(stat) \pm 0.232(syst) \pm 0.262(\text{lumi}) \text{ mb},$

 $\sigma_{\psi(2S)}^{coh} = 0.923 \pm 0.086(stat) \pm 0.028(syst) \pm 0.040(lumi)$ mb,

 $\sigma^{coh}_{J/\psi} / \sigma^{coh}_{\psi(2S)} = 0.155 \pm 0.014(stat) \pm 0.003 (syst).$

• Systematic uncertainties:

Source	Relative uncertainty [%]			
	$\sigma^{ m coh}_{J\!/\!\psi}$	$\sigma^{ m coh}_{\psi(2S)}$		
Tracking efficiency	0.5 - 2.0	0.5 – 2.0		
PID efficiency	0.9 - 1.6	0.9 - 1.6		
Trigger efficiency	2.7 - 3.7	2.1 – 2.5		
HERSCHEL efficiency	1.4	1.4		
Background estimation	1.2	1.2		
Signal shape	0.04	0.04		
Momentum resolution	0.9 - 34	1.3 - 27		
Branching fraction	0.6	2.1		
Luminosity	4.4	4.4		

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP

- The most precise coherent J/ψ production measurement in PbPb UPC in forward rapidity to date
- The high precision LHCb data are of great value in theoretical model fine-tuning
- Compare to most recent theoretical calculations:
 - p-QCD calculations: include new NLO p-QCD calculation PDF uncert. and factorization / renormalization scale uncert.
 - Color-dipole models: draw different model tuning options as theoretical variations

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP 1.5data -stat. unc. syst. unc. LHCb forward rapidity at the LHC **—** STARlight PbPb $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ [am] 1.0 LO pQCD (GKSZ): Coherent $\psi(2S)$ production LTA EPS09 Luminosity unc. : 4.4%nPDF unce. $\mathrm{d}\sigma_{\psi(2\mathrm{S})}^{}/\mathrm{d}y^{*}$ Colour-dipole: ---- bCGC+GLC (GMMNS) ----- IP-SAT+GLC (GMMNS) -- No fluct. +BG (MSL) \rightarrow No fluct. +GLC (MSL) 0.0 ---- GBW+BT (KKNP) ---- GBW+POW (KKNP) 3 2 ---- KST+BT (KKNP)

---- GG-hs+BG (CCK)

Compared to pQCD and color-dipole models

The first coherent

 $\psi(2S)$ measurement in

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP

 The first cross-section ratio between J/ψ and ψ(2S) vs. rapidity measurement in forward rapidity region at the LHC

Compared to pQCD and color-

dipole models

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, FEGLP: PRC 106 (2022) 035202. GMMNS: PRD 96 (2017) 094027, EPJC 40 (2005) 519, MSL: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, KKNP: PRD 107 (2023) 054005 CCK: PRC 97 (2018) 024901

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP

12

• The first measurement of the coherent J/ψ and $\psi(2S)$ production cross-section vs. p_T in PbPb UPC Compared to pQCD and color-dipole models

GKSZ: PRC 93 (2016) 055206, PRC 95 (2017) 025204, **MSL:** PLB 772 (2017) 832, PoS DIS2014 (2014) 069,

Hengne Li

Conclusion

- A measurement of exclusive coherent J/ ψ and $\psi(2S)$ production and their cross-section ratio in UPC PbPb collisions using 2018 LHCb dataset
 - The most precise coherent J/ ψ production measurement and the first coherent $\psi(2S)$ measurement in forward rapidity for UPC at LHC
 - The first measurement of coherent J/ ψ and ψ (2S) production cross-section vs. $p_{\rm T}$ in PbPb UPC, interference effects clearly visible in the $p_{\rm T}$ spectra.
- The results are compatible with current theoretical predictions, providing strong constraints for the fine-tuning of the models
- A rich program in photon-induced production studies is ongoing at LHCb.

 The difference between the new results and 2015 measurement is about 2σ

LHCb-PAPER-2022-012, arXiv:2206.08221

15

Hengne Li

• Cross-sections:

$$\frac{\mathrm{d}\sigma_{\psi}^{\mathrm{coh}}}{\mathrm{d}x} = \frac{N_{\psi}^{\mathrm{coh}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) \times \Delta x}$$

- Event selection:
 - require a near empty detector with only two long tracks reconstructed, with acceptance cuts: $2.0 < \eta^{\mu} < 4.5$, $p_{T}^{\mu} > 700 \text{MeV}$, $p_{T}^{\mu\mu} < 1 \text{GeV}$, $|\Delta \phi_{\mu\mu}| > 0.9\pi$
 - HERSCHEL detector [JINST 13 (2018) 04 P04017] is used to further purify the selection
- Signal extraction: The (1) charmonium yields are extracted from dimuon mass fit, then the (2) coherent part is extracted from a ln(p_T²) fit

LHCb-PAPER-2022-012, arXiv:2206.08221, accepted by JHEP

16