

Initial electromagnetic field dependence of photon-induced production in isobaric collisions at STAR

Kaifeng Shen (for the STAR collaboration)

State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics, University of Science and Technology of China (skfwyl@mail.ustc.edu.cn)

Supported in part by

U.S. DEPARTMENT OF

- Introduction and motivation
- $\geq e^+e^-$ pair production in isobaric collisions
- > J/ψ production in isobaric collisions
- > Angular distribution of e^+e^- in isobaric collisions
- > Summary

Transverse EM fields are equivalent to a flux of quasi-real photons ($\propto Z^2$, and $q^2 \rightarrow 0$)

Photon-induced Production in Peripheral Collisions

Conventionally, photon-induced process is studied in ultra-peripheral collisions (b> $2R_A$,UPCs) to satisfy the coherence condition

□ The enhancements of J/ ψ and e^+e^- production at very low p_T have been observed in peripheral collisions

Photon-induced interactions can explain the observed enhancements

STAR

Photon-induced Production in Peripheral Collisions

□ Isobaric collisions provide a unique opportunity to test the electromagnetic field dependence

STAR

Implication on the Search for Chiral Magnetic Effect

□ The photon-induced production is sensitive to initial EM field

No pre-defined CME signatures observed
 Need to confirm the EM field difference in isobaric collisions for further CME study

Birefringence of the QED Vacuum

□ The Breit-Wheeler process has been investigated in peripheral and ultraperipheral Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

J.Adam et al. (STAR) Phys. Rev. Lett. 127 (2021) 052302 C.Li, J.Zhou, Y.J.Zhou, Phys. Lett. B. 795, 576 (2019)

\Box Investigate collision system dependence of $cos(4\Delta\phi)$ modulation

The Solenoid Tracker At RHIC

 \checkmark BEMC: E₀/p, identify high-p_T electron

TOF: Time of flight, particle identification TPC: Tracking, momentum and dE/dx

Collision species (taken in 2018)

- $^{96}_{44}Ru + ^{96}_{44}Ru, \sqrt{s_{NN}} = 200 \text{GeV} (\sim 2\text{B})$
- $\frac{96}{40}Zr + \frac{96}{40}Zr$, $\sqrt{s_{NN}} = 200 \text{GeV} (\sim 2\text{B})$

Acceptance cuts:

- $p_T^e > 0.2 \text{ GeV/c}$
- $|\eta^e| < 1$
- $|y^{ee}| < 1$

Invariant Mass and Transverse Momentum Distributions of e^+e^- STAR

 \square Excesses above known hadronic contributions are observed at low p_T

- With cocktail subtracted, the yields at low p_T are mainly from photon-induced interactions while the hadronic contributions dominate in intermediate p_T range
- □ The ratio of excess e^+e^- yield at low p_T (< 0.1 GeV/c) in the 40-80% centrality is consistent with EPA-QED calculation and Z^4 scaling, and is above unity
- The initial EM fields for Ru+Ru and Zr+Zr seem to be different

Centrality Dependence of Excess Yield

□ The low p_T ($p_T < 0.1$ GeV/c) e^+e^- excess and the ratio of excess are shown as a function of N_{part} □ The excess yields in Ru+Ru collisions are systematically higher compared to those from Zr+Zr collisions □ A constant function is used to fit the ratio and is about 2.4 σ higher than unity

J.Adam et al. (STAR) Phys. Rev. Lett. 121 (2018) 132301 W. Zha et al, Phys. Lett. B 800 (2020) 135089

- The excess yields in isobaric collisions are significantly smaller compared to those in Au+Au and U+U collisions
- □ The charge difference is the dominant driving factor ($\propto Z^4$)

TAR

Collision System Dependence of Scaled Excess Yield

J.Adam et al. (STAR) Phys. Rev. Lett. 121 (2018) 132301 W. Zha et al, Phys. Lett. B 800 (2020) 135089

- Z⁴ scaled yield shows clear collision system dependence, likely originating from impact parameter dependence
- Decreasing trend described by EPA-QED calculation

TAR

- □ The yield spectra are fitted by the Tsallis function at p_T larger than 0.2 GeV/c, and extrapolated to low p_T range to illustrate the expected hadronic contribution
- Data are well described by the fitted curves above 0.2 GeV/c, but show significant enhancements at low p_T range

FAR

Collision System Dependence of Scaled Excess J/ ψ yield

W. Zha et al. Phys. Rev. C 97, 044910 (2018)

- Scale J/ψ excess yields at very low p_T with Z²
 The Z²-scaled photonuclear production of J/ψ seems to be independent of collision species at a given centrality
- Effects of form factor and impact parameter seem to balance each other

$\cos(4\Delta\phi)$ Modulation in Isobaric Collisions

STAR

Summary

- □ Enhancements of J/ ψ and e^+e^- production at very low p_T have been observed in peripheral isobaric collisions
- The collision species dependence of photon-induced production have been measured at STAR
 - >The initial EM field seems to be different in peripheral Ru+Ru and Zr+Zr collisions >After taking out the charge difference, the excess yield of J/ψ is mostly independent of collision system, while e^+e^- shows an impact parameter dependence
- □ The $cos(4\Delta\phi)$ signal is prominent (~3.6 σ) in isobaric collisions, and there is a hint that the magnitude of $cos(4\Delta\phi)$ modulation in isobaric collisions is possibly higher than that in Au+Au collisions

Thank you!

Invariant Yield and Nuclear Modification Factor of J/ ψ

 \square The R_{AA} is significantly higher than unity at the very low p_T range