

## High spatial resolution pad and pixelated TPC technology R&D

#### Huirong Qi

Yue Chang, Liwen Yu, Xin She, Jian Zhang , Zhiyang Yuan, Hongliang Dai, Jinxian Zhang Linghui Wu, Gang Li, Manqi Ruan and some good inputs from LCTPC

**CEPC Day, 19 December, 2022** 

- **TPC detector for e+e- colliders**
- High spatial resolution pad readout TPC
- Pixelated readout TPC R&D
- Summary

#### TPC technology for the future e+e- colliders

- A TPC is the main tracking detector for **some candidate experiments at future e+e- colliders** 
  - ILD at ILC and the baseline detector concept of CEPC
- TPC technology can be of interest for other future e+e- colliders



Huirong Oi

## TPC requiremetns from e+e- Higgs/EW/Top factories

- TPC can provide hundreds of hits (for track finding) with high spatial resolution compatible with PFA design (very low material in chamber)
  - $\sigma_{1/pt} \sim 10^{-4}$  (GeV/c)<sup>-1</sup> with TPC alone and  $\sigma_{point} < 100 \mu m$  in r $\phi$
- **Provide dE/dx and dN/dx with a resolution** <4%
  - Essential for Flavor physics @ Z run
  - Beneficial for jet at higher energy





#### Pad and pixelated readout TPC technology

- TPC as the main tracker detector to satisfy the physics requirements :
  - For Higgs, W and top running, **no problem** for all TPC readout technologies.
- For high luminosity  $(2 \times 10^{36})$  Z running
  - Pixelated readout TPC is a good option at **high luminosity** on the circular e+e- collider
  - Pixelated readout TPC is a realistic option to provide
    - High spatial resolution under 2T or 3T magnetic field
    - Better momentum resolution
    - High-rate operation (MHz/cm<sup>2</sup>)
    - dE/dx and Cluster counting (in space)
    - Excellent two tracks separation

#### **Standard charge collection:**

Pads (1 mm $\times$ 6 mm)/ long strips

#### **Pixelated readout:**

Bump bond pads are used as charge collection pads.  $55 \mu m \times$  55  $\mu m$  or larger



• High spatial resolution pad TPC technology

#### Pad TPC technology - double GEMs

- GEMs: copper-insulator- copper sandwich with holes
- Double GEMs module are being tested:
  - GEMs with 100µm LCP insulator
  - Standard GEM from CERN
- Design idea of the GEM Module:
  - **No frame** at modules both sides

#### GEM Module 1:

- 2 GEMs made of 100 µm thick LCP
- 1.2×5.4mm<sup>2</sup> pads

• Spatial resolution of  $\sigma_{r\phi} \leq 100 \ \mu m$ , more stability by the broader arcs at top and bottom



Huirong Oi

## Pad TPC technology - triple GEMs

- Design idea of GEM Module 2:
  - Minimize dead area
  - Without frame to stretch GEMs, but a 1 mm grid to hold GEM
- Spatial resolution of σ<sub>rφ</sub>≤100 µm, and double track resolution and dE/dx calculated in dependence on the pad sizes

#### GEM Module 2:

- 1.26 × 5.85mm2 pads staggered
- Field shaping wire on side of module to compensate the field distortions





#### Pad TPC technology - Resistive Micromegas

- Resistive Micromegas:
  - Bulk-Micromegas with 128 µm gap size between mesh and resistive layer (developed in LCTPC)
- A new HV scheme of the module (ERAM) places grid on ground potential
  - Reduces **field distortions** between modules by a factor of 10





https://doi.org/10.1016/j.nima.2019.162798 Huirong Oi



#### CEPC TPC detector prototyping roadmap

- From TPC module to TPC prototype R&D for beam test
  - Low power consumption FEE ASIC (reach <5mW/ch including ADC)
- Achievement by far:
  - Supression ions hybrid GEM+Micromegas module
    - IBF×Gain ~1 at Gain=2000 validation with GEM/MM readout
  - Spatial resolution of  $\sigma_{r_0} \leq 100 \ \mu m$  by TPC prototype
  - dE/dx for PID: <4% (as expected for CEPC baseline detector concept)





Low power consumption readout

#### Pad TPC technology – GEM+Micromegas

- **GEM and Micromegas** groups have finished analysis of test beam data with previous set of detector modules. Both technologies show **very similar performance**.
- LCTPC want to implement improvements in a **new generation of modules** => **common modules** 
  - Common readout electronics (sALTRO)
  - Only the gas amplification stage differs
- Combined Micromegas + GEM readout has been developed, which promises a **lower ion backflow** (IBF) at CEPC TPC group without gating.
  - IBF×Gain ~ 1 at total gain of 2000



## TPC prototype with 266nm UV laser tracks

- The TPC prototype integrated 266nm UV laser tracks has successfully developed.
- Analysis of UV laser signal, the spatial resolution, dE/dx resolution
  - Spatial resolution can be less than 100 µm along the drift length of TPC prototype
  - Pseudo-tracks with 220 layers (same as the actual size of CEPC baseline detector concept) and dE/dx is about 3.4  $\pm$  0.3%



ي ⊗ 30

15

10

data

 $\sigma_{\rm dE/dx} = 3.36 \pm 0.26 \,\%$ 

 $- \sigma_0 \cdot (N_{hits})^{-k}$ 

https://doi.org/10.1016/j.nima.2022.167241 Huirong Oi

#### Reconstruction event and energy spectrum of <sup>55</sup>Fe/Cosmic ray

- TPC detector prototype can study the UV laser track, 55Fe radiation source and the cosmic ray.
- TPC prototype was checked after one year development
  - <sup>55</sup>Fe X-ray spectrum profile is very good
  - Detector gain just shift 2% than one year before.
- The Landau distribution of the cosmic ray's energy spectrum was successfully obtained.

| Summary of the event sele | ction cuts.                                                                               |                             |
|---------------------------|-------------------------------------------------------------------------------------------|-----------------------------|
| Laser energy monitor      | Variation range                                                                           | $E_{mean} \pm \sigma$       |
| TPC detector              | Hit ToA                                                                                   | layer#1 2.6 ~ 2.9 μs        |
|                           |                                                                                           | layer#2 5.7 ~ 6.0 $\mu$ s   |
|                           |                                                                                           | layer#3 8.2 ~ 8.5 μs        |
|                           |                                                                                           | layer#4 10.5 ~ 11.0 $\mu$ s |
|                           | Trigger pads                                                                              | $\geq 2$ for each column    |
| Laser and detector        | The laser control chassis triggers the energy monitor<br>and DAQ system at the same time. |                             |



• Pixelated TPC technology

#### Pixelated TPC technology – Large scale readout

- TPC prototype with GridPixes:
  - A module **with 32 GridPixes has been constructed** and was in a test beam in B=1.0T at DESY in June 2021.
  - Very high detection efficiency results in excellent tracking and dE/dx performance. Timepix4 development is ongoing.
- During the test beam ~10<sup>6</sup> events were successfully collected, all results showed that **a pixel TPC is realistic.**
- Ion back flow of the module has been measured and the analysis regular meeting were set up every month with IHEP and Bonn University.





DESY testbeam in June 2021

https://arxiv.org/abs/1902.01987 Huirong Oi

#### dN/dx cluster counting

- Challenging for the **low power consumption** electronics (>40mV/fC needed at 2000 of gas gain)
- Pixelated readout
  - $\rightarrow$  high granularity readout in endplate
  - $\rightarrow$  the reasonable pixilation reveals the underlying cluster structure in 3D chamber
- Occupancy of the pixelated TPC
  - Occupancy is very key issue at the high rate or high luminosity
  - Smaller pad/pixel size
    → smaller occupancy
  - To be addressed by R&D

     → A detailed simulation would
     be necessary to determine the
     scaling factor
    - $\rightarrow$  Simulation ongoing at IHEP



## High granularity for improved PID in TPC

- Current full ILD reconstruction: 6mm pads → ~4.8% dE/dx resolution
- 6mm  $\rightarrow$  1mm: 15% improved resolution via the charge summation (dE/dx)
- 6mm  $\rightarrow$  0.1mm: 30% improved resolution via the cluster counting (dN/dx)
  - Pad size of about 300µm can record ~1 primary cluster along track length at T2K gas
  - High **readout granularity** VS the primary cluster size optimization



All studies ongoing

## Updated of the pixelated TPC R&D for CEPC at IHEP/Tsinghua

- **R&D on Macro-Pixel TPC readout for CEPC** 
  - Macro-Pixel TPC ASIC chip was started to developed in this year and **1st prototype wafer has done in December**.
  - The first version ROIC has been received and under testing. Interposer PCB
  - The **TOA and TOT** can be selected as the initiation function in the ASIC chip.
    - $1 \text{mm} \times 6 \text{mm} \rightarrow 500 \mu \text{m} \times 500 \mu \text{m}$  pixel readout
    - Higher precision and higher rate (MHz/cm<sup>2</sup>)
    - Gain of the amplification: >40mV/fC
    - Channels: 128
    - Time resolution: 14bit (5ns bin)
    - Time discriminator: TOA (Time of Arrival)
    - Power consumption: <1mW/pixel (1<sup>st</sup> prototype)
      - $\sim 400 \text{mW/cm}^2$
      - 100mW/cm<sup>2</sup> (Goal and final design)
    - Technology: 180nm CMOS
    - High metal coverage: 4-side buttable



1<sup>st</sup> readout PCB board and the ASIC layout

- TPC tracking using GEM, Micromegas and GridPix pad and pixelated readouts have been developed for the future e+e- colliders.
- Analysis of test beam data with similar set of GEM, Micromegas and Gridpix modules demonstrated the proof-of-concept and validated these technologies.
- The TPC prototype integrated 266nm UV laser tracks has successfully developed at IHEP in the last few years, the results promised the spatial resolution and dE/dx. Macro-Pixel TPC ASIC chip was started to developed in this year and the tests will be starting.
- Synergies with CEPC/FCCee/EIC/T2K/ALICE allow us to continue R&D and ongoing, we learn from their experiences and R&D.

# Many thanks!