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Introduction

+» The CEPC experiment aims to measure the property of
the Higgs boson precisely

e Requirements: high track efficiency (~100%), momentum
resolution (<0.1%), PID (20 p/K separation at P < ~ 20 GeV/c), ...

e Precise simulation is needed as it gives precise results

+ The 4t conceptual detector design
adopts silicon + drift chamber (DC) for m— 1
tracking system =|m E‘ MHI

e The DC: track reconstruction and PID |
(dN/dx+dE/dx)

Drift chamber

+ Performance of the DC needs to be studied with
precise simulation



+ QOriginally driven by the dN/dx study:

Towards precise DC simulation

Needs precise ionization simulation, waveform
simulation

Geant4 + TrackerHeed + NN model is adopted

Geant4: for particle propagation (decay) in the detector,
interaction with detector material, ...

TrackerHeed (from Garfield+ +): used for ionization
process simulation for charged particles (e, i, m, K, p, ...)

hidden layer

NN model: is used for fast pulse simulation for each  *™
ionized electron (primary particle independent), training “ ” ‘[
data is from Garfield++ imo

More details in this talk

Shortcoming, the space charge effect can not be

simulated e
arXiv:2211.06361, RPC simulation with space charge == |
effect (dynamic update of the electric field) '


https://indico.cern.ch/event/855454/contributions/4596445/

Towards precise drift time simulation

+ The measurement of the earliest drift time for a fired DC

< ldea: learn drift time distribution from

cell is important for track reconstruction, as it will be
converted to closet distance (between track and signal
wire, via X-T relationship) and be input for tracking

+ In previous: constant drift velocity V 4+=40um/ns &
fixed spatial resolution: 6=110um

+ Although the Garfield++ has some difficulties in space
charge effect simulation, the earliest drift time
simulation is almost independent of the space charge
effect and can be simulated precisely

g o Garfield++ g §F

Garfield++ and apply it in the simulation




Overview of the DC software

Garfield++
&& ML

Geometw
 ocditen : waveon
simulation
Genfi #
«» The CEPCSW
. DCtrack

Waveform
reconstruction | data model reconstruction
(EDM4hep &

e Gaudi-based framework o eomh

+ The drift chamber software has
been developed from scratch

DC simulation \

e External libraries and tools (Geant4,
ROOT, ..)

+» Geometry and field map

Inner and outer radius 800mm to 1800 mm
e DD4hep, supports a non-uniform t00/s
. . Cell size ~10mmx10mm/18mmx18mm
mag netlc fleld Gas He:iC,H,=90:10
Single cell resolution 0.11 mm

Sense to field wire ratio 1:3

0:. D a ta m O d e | Total # of sense wire 81631/24931

Stereo angle 1.64~3.64 deg
Sense wire Gold plated Tungsten $=0.02mm
. E D M 4 h e p a n d FWC O re Field wire Silver plated Aluminum ¢=0.04mm
Walls Carbon fiber 0.2 mm(inner) and 2.8 mm(outer)

e dN/dx event model extension .



The DC digitization

« In DC digitization

DC simulation
Garfield++
e Time and charge measurements will be \&&ML
given for fired DC cells ocagtizmton ) N TR
PP simulation

I

e The earliest drift time will be assigned to & cen

1 M rac Waveform
the measured time of this DC cell ccmcion | I recr
. . . . DCEDMp)
e Drift time simulation plays a role A
« In DC track reconstruction: T
) Calibrated X_T relationship is used’ Which Drift chamber simulation and reconstruction flow
converts measured time to closet distance
(between track and signal wire) which will AP
be used for track reconstruction
<+ Full working flow: o
e 1, learn drift time from Garfield++ (NN) (this ool
talk) odf
e 2, do X-T calibration S T 1(12)

e 3, check the track reconstruction performance 6



Proof of the feasibility

Prepare experimental

+ To proof of the feasibility of NN L
can learn complex drift time R S
distribution, real data from the E)fafmf”f fime distribution:
BESIII experiment is used ' |
.. Check Dccllgiscat time? Délvﬁ\i’jft”tr;'me
+ Dataset: radiative Bhabha event ;
. . . check the X-T cure:
e Detailed event selection link cgata CNN sim.
v

check spatial resolution:
using CH2fe, G
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https://docbes3.ihep.ac.cn/DocDB/0009/000921/004/bes3memo.pdf

The NN model

+» The Normalizing Flow is adopted:

e Learning bijective transformation between two distributions(e.g. drift time ~
N(0,1))

e Compared to GAN, it is much easier to train (stable and convergent)

e Reference to the CaloFlow, a similar model is used, RQS (for
transformation)+MADE block (for the parameters of RQS)

/ ] \ / 4\ Training Data
1 dim Doca ™1 MADE [+ Doca ™ MADE [* o
) — — Drift time
Base d|St. Eang|e = L Eangle >
N(0,1) Block Block
/N | t v t 3 | Sampled
k RQS AN RQS / Inference |Drift time
MADE Block
Base distribution Number of Layer sizes Number of [ oo e, | [foem s o
MADRE blacks input hidden  output RSl
1-dim 6 64 3x64 23 8 s
Standard Normal 000000000 0sbEw



https://arxiv.org/pdf/2106.05285.pdf
https://arxiv.org/abs/1502.03509

NN simulation performance

+» Compared the drift time distribution between data

and NN simulation
& 1600
£ oo Dcciigit}at VS doca o Prepare experimental
% 1200f _ . data for*tralnlng
__layeriD=20 flow driftTime vs Pre Time __ A e o Learn drift time distribution:
16000F 1§ B driftTime - 8005 : Z 500 Dayift time = f(doca, eangle, layer)
i PreTime N eool 3 v
14000} ] ol Check pdata DNN sim.
r drift time» ~drift time
12000f ] 200 o ¥
. 10000} ] ot o check the X-T cure:
o cdata ~NN sim.
E 8000_ . & 1600 — - 700 X-T » ‘X—T
w =
[ ] g b NN sim. . .
6000 - ¢ Darift time VS dQca 600 check spatial resolution:
i ] 12001 - : data NN sim.
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+ Consistent between data and NN simulation



NN simulation performance

layeriD=20 flow entra[0.000,0.080]
4

“Boca: [1-08]. ] ofDoca: [0.80.8] 1 ““Docal[0.6-0dl
120F ‘I r ] P 1 3 3sof i
i 00

+ A detailed check, in
different entrance angles
and Doca region.
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+ In general, good
agreement between data
and NN simulation
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cell edge)
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X-T relationship curve

% Check the X-T curve from the
experimental data and NN simulation
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Prepare experimental
data for training

Learn drift time distribution:
Darire time = f(doca, eangle, layer)

data NN sim.
Check Dgrirt times Darist time

check the X-T cure:
C)((Iar?a C;{VNTsim.

check spatial resolution:
using c4eta cNN sim.

The mean Docas versus
time are obtained for
different layers and
entrance angle

red for 3%, blue for
C)I(ViVTsim.
Difference is < 40 um

11



Spatial resolution check

» Checked the spatial resolution of reconstructed track,

: data d NN Slm
using C and Cy
I DataXT Calconst Rec spatial resolution PreXT CalConst Rec spatial resolution I DataXT Calconst Rec spatial resolution PreXT CalConst Rec spatial resolution I
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( data CNN sim. ( data CNN sim.
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-3.1e-4/-5.1e-5

0.02060/0.02086

Prepare experimental

data for training
V

Learn drift time distribution:
Darift time = f (doca, eangle, layer)
v
d
Check Ddrt'lifl% time>
v
check the X-T cure:

Cga%a , CNN sim.

DNN sim.
drift time

check spatlal resolution:
USIHg ga%a’ CNN sim.

0

L)

Consistent spatial
resolution results

by using ¢{%* and
CNN sim.

<« The NN can learn
the drift time from
the data 12



Drift time simulation in CEPC

<+ Using a similar method for the s S e R R :
CEPC drift time simulation Fing Peakg
» Produce Garfield++ simulation ;"
data for training: o L
e DC Cell sizeis 18 mm* 18 mm 0'5; i] J‘& l
e Gas: 90%He+10%C,H,, Py '_io'ob';i&'n_:,ga; oAb s

e Signal wire voltage: 1630 V

e For each event, an ionized electron
is uniformly generated in the cell
(x,y) and the pulse is simulated

e Then peak finding algorithm
(scipy.signal.find_peaks()) is used to get
pulse time (drift time) and

amplitude (used for threshold cut) +



Pre time (ns)

Drift time simulation in CEPC

« Similar NF model is used for training

llllllllll Fl’owvlo’ss‘ ——
/_ \ / \ . g/—\ 1.002—
; rainin GF data 0.75f
Baz;g'$st_ Xpcar [*| MADE Xlocal [7| MADE (drift time, amp.) osof
N,(0,1), p | Block e || Block " gy
N,(0,1), y,{ocal ylocal —_—— B o.oo;— ..
: - i Sampled ~o2sf
| / \ [ —|Ras| [5iIi: inference] (drift time, amp.) osof
\ / - PN 25 B P
3000 . 3000 .
: o & + By using the NN model,
R one can simulate the
o T drift time and pulse
L amplitude according to
c™ the cell local x,y position
0 T of the ionized electron
%2 04 o6 o5 i '1{2‘r (‘c;).a 0 % 02 o4 0s 08 1 2 (Cnl)-“ °
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Summary and plan

+ Precise simulation is important for the CEPC, the DC
software is now moving on precise simulation

<+ Similar to dN/dx simulation, a precise drift time
simulation is performed by learning Garfield++ data

sample

+ To prove the feasibility of the method, real data from
the BESIIl experiment is used. The results show the NN
iIs able to learn the drift time precisely

« Next step:

e the X-T calibration should be performed. An iterative process
between track reconstruction and X-T calibration

e Using cell local positions of ionized electrons (simulated by
TrackerHeed) as input of the NN 15



Thanks for your attention!



Back up



4 N\
2 dim
Base dist.
N:(0,1),
N,(0,1),

Prepare experimental
data for training

Learn drift time distribution:
Darift time = f(doca, eangle, layer)

data
Check Ddrift time: Ddrift time

NN sim.

check the X-T cure:
C)((iata CNN sim.

check spatial resolution:

Tra‘”"‘g( GF data

no

usmg )c(la%a’ CNN sim.
/ e — e
xlocal MADE | xlocal ~| MADE
Block e Block
e
Yiocal Yiocal N

t - t -

JRQS| [T RQS

(drift time, amp.)

( Sampled

InferenceLdI’Ift time, amp. )
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Track Finding by CKF

+ Combinatorial Kalman Filter (CKF)

Basic procedure behind the CKF

. . [[Track Seeds |—={Extrapolation |
e A tracking concept that combines track Kﬂ!m!m .
finding and track fitting in a search-tree- e T
based algorithm.
e Used by many high energy physics —
experiments
The specific process of C
+ Track finding using CKF in Drift

Chamber .0;0.. retained,

e Methods: The reconstructed SiTrack is
selected as seed to select DC hits
belonging to the same track

« Current progress:

e Reusing CKF from Belle Il and running it
in CEPCSW

19



Drift time simulation in CEPC

« Similar NF model is used for training

0

GF data

(drift time, amp.)
- @/

Y
Sampled

4 N [/ N
. e e L,
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+ After obtaining the NN
model, one can simulate
the drift time and pulse
amplitude according to the
local x,y position of the
lonized electron
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lonization simulation

+» The ionization simulation is done by
combining Geant4 and TrackerHeed

e TrackerHeed (from Garfield++) used for
lonization process simulation

e Geant4 for particle propagation (decay) in the
detector, interaction with detector material, ...

% Pulse simulation for each ionized foos!
electron fooloo
e The Garfield++ simulation takes a long time = @G
e NN is used for fast simulation, simulating the
time and amplitude of each pulse, more e
details in this talk = Ll |

21


https://indico.cern.ch/event/855454/contributions/4596445/

Summary

- The DC simulation and track reconstruction in the CEPCSW is
presented

» The multi-track fitting has been developed with Si+DC
measurements and the performance is reasonable

» The chain of dN/dx study in CEPCSW is presented

» The preliminary results for dN/dx PID performance in CEPCSW
are checked, they are in good agreement with the results from
the standalone Garfield++ simulation

o Future plan:
o Continue working on track finding

o Track reconstruction with background mixing and using more
realistic X-T relation

o More detailed dN/dx performance check

22



Thank you for your attention!



Drift Chamber(DC) Software

Drift chamber is the key detector in the 4th conceptual detector design to provide
PID

e Good PID ability (20 p/K separation at P < ~ 20 GeV/c)

e Precise momentum measurement (eff. ~100%, o, <=0.1%)

Motivation of DC software project

e Development of simulation and reconstruction for DC

e Support the detector design, optimization and performance study

A PID drift chamber

e Support physics sensitivity study

Requirements for DC software

Physics Detector Performance
Measurands

process subsystem requirement

e Modular design and friendly interfaces

e Easily integrated with common tools (ACTS, Genfit etc.) 282w ozl 0 A=

H—putu BR(H = "y 2%x107° ¢ N'[\”%

e Reuse existing algorithms from other experiments

e Application of advanced technic (ML) to simulation and reconstruction
Manpower

e [HEP: Yao Zhang, Tao Lin, Wenxing Fang, Chengdong Fu, Ye Yuan, Weidong Li

e SDU: Mengyao Liu, Xueyao Zhang, Xingtao Huang
24



Drift Chamber Parameters in CEPCSW

+ The baseline configuration of DC in CEPCSW

Half length 2980 mm ool
T
Inner and outer radius 800mm to 1800 mm % |
# of Layers 100/55 g
3§-
Cell size ~10mmx10mm/18mmx18mm 0]
Gas He:iC,H,,=90:10 -1s0)
A

Single cell resolution 0.11 mm ® 2 \Wire position xicm]

65.0 o - -
Sense to field wire ratio 1:3 9y AU

63.5 S
Total # of sense wire 81631/24931 &

S 61.51, oot
Stereo angle 1.64~3.64 deg c 605 Tl
EEIERREERIE

Sense wire Gold plated Tungsten $=0.02mm §§§§ . 1

5755 toele
Field wire Silver plated Aluminum ¢$=0.04mm Eég Jele

55.5 R o

55.0 : —
Walls Carbon fiber 0.2 mm(inner) and 2.8 mm(outer) GEEENNEEsB882RRRABREG

Wire position x[cm]

Cell structure o5



Silicon detectors Parameters in CEPCSW

Silicon Number of  Radius(mm) o, (um) oy(pm)

tracker layer

VXD 3 double 16-58 2.8/6/4/4/4/4 2.8/6/4/4/4/4
layers

SIT 4 layers 230-770 7.2 86

SOT(SET) 1 layer 1815 722 86

26



Silicon+DC vs Silicons

+ Got better momentum measurement with the drift
chamber

M9 = Si+DC 1
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0.004 ;_ ................ 5 B i ............ |
0_0035i .................. ‘ .......... T ‘ .......... A ..................................... ....................................
- 0.003F s —
00025 S T T ;
0_002 E_ .................. .................................... ............ . ..................................... .................................. .
0.0015 ;_ .................. - ......... [ - . ..................................... -

o(p_)p

ooo0s[ S T T |

_| 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 | 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30
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CEPCSW Software

o CEPCSW software structure

o External libraries:

0 DD4hep: complete detector
description (geometry, B field,
Material, ... ). Consistent description
(simulation, reconstruction, analysis)

0 EDM4hep: the generic event data
model for HEP experiments (see next
slide)

a ...

o Core software:

0 Gaudi framework: defines interfaces
to all software components and
controls their execution

0 K4FWCore: data service for EDM4hep

0 Applications:
0 CEPC-specific software: generator,

Key4hep::

Generator k4SimDelphes
. . Keydhep::
Simulation St aostion

Reconstruction Applications

L

Gean4 simulation, reconstruction, and !

analysis

Keydhep:: Keydhep::
k4FWCore k4LCIOReader

Gaudi Framework

Core Software layer
Keydhep:: Keydhep:: Keydhep::
DD4hep PODIO EDM4hep

ROOT Geant4 LCIO

gcc python cmake
Key4dh . '
?’pa:kp External Libraries & Tools

...................................................


https://github.com/cepc/CEPCSW

EDM4hep

Common EDM: ILC, FCC, CEPC, CLIC, ...

Efficiently implemented (fast data access,
efficient memory usage)

Support multi-threading

Potentially heterogeneous computing

Easy to generate the C++ code
from a high-level description
of the desired EDM (YAML file)

using the podio

EDM4hep DataModel Overview (v0.6)

RawCalorimeterHit

Association ;'_:-CalorimeterHl'ﬁ::-:;;

[—

MCParticle <€

q____________-

ParticlelD

r— Cluster/%
<O

oParticlpAssodiation o ReconstructedPartche

\\\

";iTrackerHit

Monte Carlo

TPCHit ~ TrackerHitPlane

Raw Data [|Digitization

-

ngf Vertex

Reconstruction &

Analysis
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EDM4hep Extension

+ Currently, the EDM4hep does not include the EDM for
dN/dx study, we extended it by using the extension
mechanism of podio (very convenient)

+ Following EDMs are extended (more details in
following slides):

e SimPrimarylonizationCluster

e TrackerData

e TrackerPulse

e ReclonizationCluster

e RecDndx

+» The extended EDM is supposed to be used both for
the drift chambers and the TPC

30



