

Institute of High Energy Physics, Chinese Academy of Sciences

Lithium vapour

Wakefield acceleration

The strategic planning for the PBA-TF and the corresponding team

Dr. Dazhang Li, et al.

On behalf of the CEPC Plasma Injector team

- Motivations and goals
- Current status and timetable
- Preliminary progress and growing team

PWFA TF: for FEL and for Future Collider

Operational

4.0-13.5

0.7-2

1-5

6-20

Ranges

5

10, 10

Affiliations/institutes on PWFA Study

Repetition Rate [Hz]

Norm. Emittance ysx,y at S19 [µm]

30

4.4, 3.2

1-30

3-6

20221209-CEPC day-CEPC Plasma Injector

2022-12-19

Repetition Rate [Hz]

Norm. Emittance ysx,y at S19

CPI TF: not only for PBA, but also for conv. acc.

Key issues		Preliminary study/ Conceptual design	Detailed and convincing simulations / designs	Experiment test / Prototype
	HTR	\checkmark	\checkmark	×
e- PWFA	Beam quality preservation	\checkmark	\checkmark	×
	Error analysis	\checkmark	×	×
	High quality practical scheme	\checkmark	\checkmark	×
e+ PWFA	More schemes, HTR etc.	\checkmark	×	×
	High efficiency	\checkmark	×	×
	High charge L-band RF Gun	\checkmark	×	×
Conv. acc. physics and techniques	Beam profile preservation	\checkmark	×	×
	Beam merging	\checkmark	×	×
	Instrumentation	\checkmark	×	×
	Timing synchronization	\checkmark	×	×
	Positron beamline	\checkmark	\checkmark	×
	Plasma dechirper	\checkmark	\checkmark	\checkmark
Plasms source and	Plasma lens	×	×	×
beam manipulation	Plasma sources	\checkmark	\checkmark	×
	Staging	\checkmark	×	×

20221209-CEPC day-CEPC Plasma Injector

Beam Parameters of FACET-II

Electron Beam Parameter	Baseline Design	Operational Ranges	Positron Beam Parameter	Baseline Design	Operational Ranges
Final Energy [GeV]	10	4.0-13.5	Final Energy [GeV]	10	4.0-13.5
Charge per pulse [nC]	2	0.7-5	Charge per pulse [nC]	1	0.7-2
Repetition Rate [Hz]	30	1-30	Repetition Rate [Hz]	5	1-5
Norm. Emittance γε _{x,y} at S19 [μm]	4.4, 3.2	3-6	Norm. Emittance γε _{x,y} at S19	10, 10	6-20
Spot Size at IP σ _{x,y} [µm]	18, 12	5-20	Spot Size at IP σx,y [µm]	16, 16	5-20
Min. Bunch Length σ _z (rms) [μm]	1.8	0.7-20	Min. Bunch Length oz (rms)	16	8
Max. Peak current Ipk [kA]	72	10-200	Max. Peak current Ipk [kA]	6	12

Beam Parameters of FLASHForward

Beam type	e- only		
Beam energy	1.25 GeV		
Transverse emittance (nor.)	2 mm·mrad		
Peak current	2.5 kA		
Bunch charge	0.1~3 nC		
Focal spot	~ 7µm		
Energy spread	0.1%		

Principles of CPI TF

- 1. MUST including e+ beamline
- 2. High charge L-band RF needed
- 3. Staging of different types of accelerators
- 4. As low energy as possible
- 5. PWFA-based FEL studies included
- 6. Scheme 1: based on BEPC-II linac
- 7. Scheme 2: a new dedicated TF based on a SC linac for high rep. rate and high average power EUV source studies

3kA @ 10µm×10µm

Preliminary design for a plasma acceleration TF

Motivations and goals

- Current status and timetable
- Preliminary progress and growing team

20221209-CEPC day-CEPC Plasma Injector

Hall 10 upgrade proposals and beam qualities

Phase I (1-2 years):	Phase I
Overall lattice and light nath design	Energy
	Peak cu
New transport beamline installation & commissioning	Bunch o
Final Focus installation in Hall 10	Focal sp
Clean room + laser system installation	Energy
L-band RF gun design	Profile
Phace II (2-5 years)	Phase I
Pliase II (3-5 years):	Energy
L-band RF gun fabrication and test	Peak cu
 Instrumentation installation 	Bunch o
Laser system and beamline combination	Focal sp
	Energy
Phase III (~ 5 years):	Profile
L-band RF installation and BEPC-II linac upgrade	
e+ beamline installation	

.

.

.

PBA based FEL studies

Phase I	e0	e1	p1	eL	
Energy	≤ 2.5 GeV	/	≤ 2.5 GeV	\leq 0.5 GeV	
Peak current	0.5 kA	~ 2 kA	~ 0.1 kA	≥ 5kA	
Bunch charge	2 nC	2nC	< 0.1nC	0.2nC	
Focal spot	1.1mm	50µm	50µm	1µm	
Energy spread	0.5%	0.5%	0.5%	< 5%	
Profile	Gaussian	Gaussian Gaussian		Gaussian	
Phase II & III	e1	e2	p2	eL	
Energy	/	≤ 2.5 GeV	0.4~0.6 GeV		
				- 0.5 000	
Peak current	~ 2 kA	≥ 6 kA	~ 3 kA	≥ 5kA	
Peak current Bunch charge	~ 2 kA 2nC	≥ 6 kA 10 nC	~ 3 kA ~ 1nC	≥ 5kA 0.2nC	
Peak current Bunch charge Focal spot	~ 2 kA 2nC 50µm	≥ 6 kA 10 nC < 10µm	~ 3 kA ~ 1nC 50µm	≥ 5kA 0.2nC 1µm	
Peak current Bunch charge Focal spot Energy spread	~ 2 kA 2nC 50µm 0.5%	≥ 6 kA 10 nC < 10µm /	~ 3 kA ~ 1nC 50µm /	≥ 5kA 0.2nC 1µm < 5%	

Beam requirement for different studies

Research		driver trailer	Phase I	e0	e1	p1	eL		
			craner	Energy	\leq 2.5 GeV	/	\leq 2.5 GeV	\leq 0.5 GeV	
ο- DWFΔ	① blowout acc.	e1	or eL	Peak current	0.5 kA	~ 2 kA	~ 0.1 kA	≥ 5kA	
CIMIA	③ HTR acc.	e2	e1 or eL	Bunch charge	2 nC	2nC	< 0.1nC	0.2nC	
	1 acc. structure	e1	/	Focal spot	1.1mm	50µm	50µm	1µm	
e+ PWFA	\bigcirc preliminary acc.	eL	p1	Energy spread	0.5%	0.5%	0.5%	< 5%	
	③ High quality acc.	e2	p2	Profile	Gaussian	Gaussian	Gaussian	Gaussian	
	② L-band RF gun test	/	/	Phase II & III	e1	e2	n2	el	
	③ Beam profile	e2	/	Energy	/	< 2 5 GeV			
Conv. acc.	① Beam merging	e	1/eL	Deels enwort	/				
physics and techniques	2 Instrumentation	eL	/		~ 2 KA	2 6 KA	~ 3 KA	≥ 5KA	
and techniques	② Synchronization	eL	e1/e2	Bunch charge	2nC	10 nC	~ 1nC	0.2nC	
	③ e+ beamline	n2	/	Focal spot	50µm	< 10µm	50µm	1µm	
	① Dechirper	e1/el	/	Energy spread	0.5%	/	/	< 5%	
Plasms source	 Plasma lens 	/	/	Profile	Gaussian	triangle	Gaussian	Gaussian	
and beam	① Plasma sources	S / / • 2022.12: Phase I conc			I conceptual	conceptual design (physics)			
manipulation	③ Staging	e1,	e2, eL • 2023.02: Phase I technical design (engineering drawing) ar			ing) and			
				Phase	II and III co	oncentual de	esian (physics	:)	

• 2022.04: Phase II and III technical design (engineering drawing)

- Motivations and goals
- Current status and timetable
- Preliminary progress and growing team

Transport Line from AM3 to Hall 10

Main function of the new transport line:

- > Dispersion correction (since the energy spread is large)
- ➢ Bunch length compression from 1.2mm to ≤0.3mm
- Similar twiss parameters before AM3 and after B3

Boundary condition:

- ➢ Space limit, especially around AM3, B1
- Same deflect angle for AM3, B1 and B2, B3
- AM3 to Hall 10: ~ 18-20 meters
- > Quadruple \leq 30 T/m, Dipole \leq 1.4 T (for large beam pipe)
- ➢ Gap between magnets should be larger than 30cm

• Basic method:

- Local dispersion correction (B+Q+B)
- Add chicane for bunch length compression

Space limit: AM3, B1 and Q1

20221209-CEPC day-CEPC Plasma Injector

Preliminary optimization results

20221209-CEPC day-CEPC Plasma Injector

Conceptual design for BEPC-II main Linac upgrade

- 1. e+ beamline
- 2. e- L-band RF gun
- 3. e- beam line (for RF gun)

Main Linac upgrade -- e+ beamline -- through wall

- •正电子束线过墙 (需要明确过墙尺寸限制)
 - •要求过屏蔽墙只能小孔过,不能放四极磁铁
 - 需要在直线隧道内完成局部消色散

B2

87

- 方案1:采用~270°弯铁系统,两个~135°偏转铁+四极磁铁(×)
 - ▶【√】可以在过墙之前放置triplet,长漂移段
 - ▶【×】横向空间要求占用人行道侧大于2.4m,超过直线隧道横向空间
- 方案2: 采用<90°弯铁系统, 比如两个35°偏转铁+四极磁铁

→ 横向空间要求 $\rho\left(1 - \cos\theta + \frac{1}{2\cos\theta}\right) + L\sin\theta$, 占用内测空间, 需要确认空间是否满足要求

20221209-CEPC day-CEPC Plasma Injector

400MeV e+ DR (600 MeV DR under consideration)

	DR			
Energy (Mev)	400			
Circumference (m)	33			
Number of bunches	1			
Bunch charge (nC)	1.0			
Bending radius (m)	1.0			
Dipole strength B_0 (T)	1.3			
U ₀ (kev/turn)	<mark>2.6</mark>			
Damping time x/y/z (ms)	33.5/33.5/16.9			
Phase/cell (degree)	60/60			
Momentum compaction	0.088			
Storage time (ms)	∞ ?			
δ ₀ (%)	0.039			
$\epsilon_0 \text{ (mm.mrad)}$	35			
injection σ_z (mm)	3.1			
Extract σ_z (mm)	2.65			
ε _{inj} (mm.mrad)	2500			
$\varepsilon_{\text{ext x/y}}$ (mm.mrad)	35/49			
$\delta_{inj}/\delta_{ext}$ (%)	0.3%/0.039%			
Energy acceptance by RF(%)	2.8			
f _{RF} (MHz)	500			
V _{RF} (MV)	2.4			
Longitudinal tune	0.068			

e+DR 基础方案设计参数

20221209-CEPC day-CEPC Plasma Injector

Overall design for Hall 10 light path

20221209-CEPC day-CEPC Plasma Injector

Manpower distribution (IHEP team & THU team)

• In charge: Prof. Yuhui Li and Prof. Wei Lu (take regular meeting fortnightly)

Overall lattice design:

- > Transport line: <u>Weibin Liu</u>, Xueyan Shi, Haisheng Xu;
- > Final Focus in Hall 10: Yiwei Wang, Cai Meng, Dou Wang; Zhi Song, Hengyuan Xiao
- > BEPC-II main Linac: <u>Cai Meng</u>, Xiaoping Li, Lei Du;
- > L-band RF Gun: <u>Xiaoping Li</u>, Guan Shu; Zhi Song
- > e+ beamline: <u>Dou Wang</u>, Lei Du, Xiaohao Cui, Zhe Duan (polarization)
- > Instrumentation: <u>Huizhou Ma</u>, Yanfeng Sui (may need more people)
- > Beam dump and radiation protection: <u>Zhongjian Ma</u>
- ➢ FEL related: <u>Yuhui Li</u>
- > Other supporter from AC: Xiang He, Dayong He (AC-Linac); Jianli Wang (AC-Mechanical).....

Laser installation and optics path design:

- > 40TW, 200TW and 1PW Laser system: Desheng Hong, Fei Li
- > Clean room and Hall 10 decoration: <u>Dazhang Li</u>, Jianfei Hua
- > Laser system and beamline combination: <u>Dazhang Li</u>, Caimeng; Jianfei Hua, Fei Li
- > Plasma source and fs e- probe: <u>Fei Li</u>, Shuang Liu

