

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Jet Charge at CEPC

Hanhua Cui Manqi Ruan cuihanhua@ihep.ac.cn

Flavor Physics Talk December 08, 2022

Outline

• Methods:

★ Leading Particle method (LPJC)

★ Weighted Charge method (WCJC)

• Combination:

★ Decision level combination

- ★ Tagger level combination
- Conclusion

Definition of effective tagging power

$$\begin{split} \varepsilon &= \frac{N^{\text{tag}}}{N} \\ N_{B^0}^{\text{tag}} &= \varepsilon (1 - w) N_{B^0} + \varepsilon w N_{\bar{B}^0} \\ N_{\bar{B}^0}^{\text{tag}} &= \varepsilon (1 - w) N_{\bar{B}^0} + \varepsilon w N_{B^0} \\ a_{\text{CP}}^{\text{obs}} &= \frac{N_{\bar{B}^0}^{\text{tag}} - N_{\bar{B}^0}^{\text{tag}}}{N_{B^0}^{\text{tag}} + N_{\bar{B}^0}^{\text{tag}}} = (1 - 2w) \cdot \frac{N_{B^0} - N_{\bar{B}^0}}{N_{B^0} + N_{\bar{B}^0}} = (1 - 2w) \cdot a_{\text{CP}} \\ \delta a_{\text{CP}} &= \frac{\delta a_{\text{CP}}^{\text{obs}}}{1 - 2w} \qquad \delta a_{\text{CP}}^{\text{obs}} \frac{N_{B^0}^{\text{tag}} \approx N_{\bar{B}^0}^{\text{tag}}}{\sqrt{N^{\text{tag}}}} \frac{1}{\sqrt{N^{\text{tag}}}} \\ \delta a_{\text{CP}} &= \frac{1}{\sqrt{N^{\text{tag}}}(1 - 2w)} \\ \varepsilon_{\text{eff}} &= \frac{N^{\text{tag}}}{N} \cdot (1 - 2w)^2 = \varepsilon \cdot r^2 \\ \varepsilon_{\text{eff}} &= \sum_i \varepsilon_{\text{eff},i} = \sum_i \varepsilon_i \cdot (1 - 2w_i)^2 \end{split}$$

Leading particle method (LPJC)

4

Weighted charge method (WCJC)

Method:

- Use the charge and momentum of all final charged particles in a jet with a weight parameter κ to calculate Q_{jet}^κ.
- the weight parameter κ is optimized for different decay modes.
- if $Q_{jet}^{\kappa} < 0$, we consider this is a b quark, and vise versa.

$$Q_{jet}^{\kappa} = \frac{\Sigma_i (E_i)^{\kappa} Q_i}{\Sigma_i (E_i)^{\kappa}}$$

Methods	Optimized κ							
Generat or	Whi	zard	Her	wig	Sherpa			
source	all	from B/ D	all	from B/ D	all	from B/ D		
All b hadrons	(ĸ=0.2)	(к=0)	(ĸ=0.2)	(к=0)	(ĸ=0.2)	(к=0)		
B0/ B0bar	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.3)	(ĸ=0.6)		
B+/B-	(ĸ=0.3)	(κ= 0)	(ĸ=0.4)	(ĸ=0)	(ĸ=0.3)	(к=0)		
Bs/ Bsbar	(κ= 0)	(к=0)	(κ= 0)	(κ= 0)	(ĸ=0.2)	(κ=1.0)		
Bc+/Bc-	(ĸ=0.2)	(к=0)	(ĸ=0.7)	(к=0)	(ĸ=0.6)	(κ= 0)		
Ab/ Abbar	(κ= 0)	(ĸ=1.0)	(κ= 0)	(ĸ=0.9)	(κ=0)	(κ= 0)		

Decision level combination of two methods

two methods decision percentage

LPJC Per WCJC		ξ = +1	ξ = +1	ξ = -1	ξ = -1	ξ = +1	ξ = -1	Only	two deci	sions	Only	one dic	ision	Total	
		ξ = +1	ξ = -1	ξ = +1	ξ = -1	ξ = 0	ξ = 0	ω	€ _{tag}	ε _{eff}	ω	€ _{tag}	ε _{eff}	€ _{eff}	
	е	7.65%	15.71%	9.64%	6.63%	68.03%	0.00%	0.00%	18.76%	6.40%	0.025				0.025
	μ	7.65%	15.68%	9.72%	6.62%	67.97%	0.00%	0.00%	18.75%	6.40%	0.025				0.025
b jet	К	21.81%	15.53%	12.09%	10.93%	61.45%	0.00%	0.00%	20.18%	16.79%	0.060				0.060
	π	56.18%	20.55%	25.77%	11.17%	42.51%	0.00%	0.00%	32.59%	35.43%	0.043				0.043
	р	6.72%	6.09%	16.54%	11.49%	28.24%	12.81%	24.82%	17.75%	2.31%	0.010	34.04%	2.53%	0.003	0.012
	Total	100.00%	17.74%	19.70%	10.44%	49.58%	0.78%	4.11%	25.45%	67.32%	0.162	34.04%	2.53%	0.003	0.165
	е	2.72%	91.76%	6.33%	0.35%	1.55%	0.01%	0.00%	1.66%	2.54%	0.024				0.024
	μ	2.73%	93.09%	6.44%	0.08%	0.39%	0.01%	0.00%	0.41%	2.55%	0.025				0.025
o iot	К	28.38%	43.59%	10.32%	10.95%	2.60%	26.14%	6.41%	5.62%	13.11%	0.103	19.69%	9.24%	0.034	0.137
c jet	π	57.28%	33.49%	7.84%	20.90%	5.23%	19.84%	12.70%	13.50%	22.18%	0.118	39.04%	18.64%	0.009	0.127
	р	8.88%	62.43%	9.65%	14.79%	13.13%	0.01%	0.00%	17.38%	6.71%	0.029				0.029
	Total	100.00%	42.14%	8.63%	16.41%	4.95%	18.05%	1.66%	10.17%	47.09%	0.299	30.38%	27.87%	0.043	0.342

Tagger level combination of two methods

Input final particle candidate i

get its PID

get ω_i (j=LPJC), ω_i (j=WCJC), decision ξ_i (j=LPJC), ξ_i (j=WCJC)

for method j, if $\xi_{i,j} = 0$, $s_{i,j} = 0$

if two $\xi_{i,j} = 0$, for smaller $\omega_{i,j}$, $s_{i,j} = 1$, for larger $\omega_{i,j}$, $s_i = 0$

put $s_{i,j}$, $\xi_{i,j}$, $\omega_{i,j}$ in this formula and get combined ϵ_{eff}

$$\epsilon_{ETP_{comb}} = \sum_{i=1}^{N_{candidate}} \sum_{j=1}^{N_{method}} s_{i,j} |\xi_{i,j}| (1 - 2\omega_{i,j})^2$$

 $S_{i,i}$ is the decision weight of j-th method for i-th candidate.

 $\omega_{i,i}$ is the mis-judgment rate ω of j-th method for i-th candidate.

 $\xi_{i,i}$ is the tagging decision of j-th method for i-th candidate.

The tagging decision ξ_i takes the value of

- +1 when the candidate is tagged as \bar{b} jet
- –1 when the candidate is tagged as b jet
- 0 when the candidate is untagged

Tagger level combination of two methods

Method	Tagger	к	ε _{tag} =N _{tag} /N	ω _i =N _w /N _{tag}	$ar{\omega}$	r ²	ε _{eff}
	е		7.70%	25.45%		0.241	0.019
	μ		7.70%	25.53%		0.239	0.018
	K		21.97%	27.45%		0.203	0.045
LFJC	π		56.33%	46.34%		0.005	0.003
	р		6.30%	36.45%		0.073	0.005
	Total		100.00%	38.35%	35.06%	0.089	0.089
WCJC	All	2	100.00%	30.04%		0.159	0.159
	е	4	7.70%	22.36%		0.306	0.024
WC.IC	μ	4	7.70%	22.35%		0.306	0.024
combined	K	4	21.97%	26.32%		0.224	0.049
with LP	π	2	56.33%	31.61%		0.135	0.076
PID	р	0	3.92%	27.94%		0.195	0.008
	Total		97.62%	28.13%	28.52%	0.185	0.180
	е		7.65%	22.33%	22.36%	0.306	0.023
	μ		7.65%	22.31%	22.35%	0.306	0.023
Total	K		21.81%	26.46%	26.32%	0.224	0.049
Combined	π		56.18%	31.72%	31.61%	0.135	0.076
	р		6.72%	30.40%	30.57%	0.151	0.010
	Total		100.00%	29.05%	28.68%	0.182	0.182

Tagger level combination of two methods

Method	Tagger	к	ε _{tag} =N _{tag} /N	$\omega_i = N_w / N_{tag}$		r ²	€ _{eff}
	е		2.75%	1.90%		0.926	0.025
	μ		2.76%	0.47%		0.981	0.027
	K		28.70%	19.73%		0.367	0.105
LFJC	π		57.56%	38.79%		0.050	0.029
	р		8.22%	28.00%		0.194	0.016
	Total		100.00%	30.36%	27.49%	0.203	0.203
WCJC	All	0	67.39%	19.07%		0.383	0.258
	е	10	2.75%	7.89%		0.709	0.020
WC.IC	μ	10	2.76%	6.84%		0.745	0.021
combined	K	0	19.36%	18.99%		0.385	0.074
with LP	π	0	38.80%	19.11%		0.382	0.148
PID	р	3	8.22%	22.77%		0.297	0.024
	Total		71.89%	13.37%	18.41%	0.399	0.287
	е		2.72%	1.91%	1.90%	0.926	0.025
	μ		2.73%	0.46%	0.47%	0.981	0.027
Total	K		28.38%	19.32%	19.18%	0.380	0.108
Combined	π		57.28%	25.77%	21.49%	0.325	0.186
	р		8.88%	22.78%	22.77%	0.297	0.026
	Total		100.00%	22.33%	19.49%	0.372	0.372

Conclusion

Analysis of jet charge performance for single jet at CEPC Z pole:

★ LPJC method:

- For $Z \rightarrow b\bar{b}$: Effective tagging power = 0.089
- For $Z \rightarrow c\bar{c}$: Effective tagging power = 0.203

★ WCJC method:

- For $Z \rightarrow b\bar{b}$: Effective tagging power = 0.159
- For $Z \rightarrow c\bar{c}$: Effective tagging power = 0.258

★ Decision level combination:

- For $Z \rightarrow b\bar{b}$: Effective tagging power = 0.165 (improve 3.8%)
- For $Z \rightarrow c\bar{c}$: Effective tagging power = 0.342 (improve 32.6%)
- ★ Tagger level combination:
 - For $Z \rightarrow b\bar{b}$: Effective tagging power = 0.182 (improve 14.5%)
 - For $Z \rightarrow c\bar{c}$: Effective tagging power = 0.372 (improve 44.2%)

★ Dependences:

- High dependence on leading particle type.
- High dependence on b/c hadrons type, especially for B_s (Mingrui), Λ_b , Λ_c , ...
- High dependence on the decay source of leading particle.

Future work:

Check the statistics.

Write the paper.

Thanks!

More interesting work (better combination, jet flavor tagging, light jets...)

Back Up

Decision level combined $\epsilon_{eff} vs \omega_1 \omega_2$

ε_{eff} ratio = ε_{eff} (combined)/ ε_{eff} (better single method) vs $\omega_1 \omega_2$

ε_{eff} (method1), ε_{eff} (method2), ε_{eff} (combined), ε_{eff} ratio vs $\omega_1 \omega_2$

combETP

ETPratio

Listen to which method

combination method listen to whom

	from	from	from	from
	b hadrons/QCD	b hadrons	c hadrons/QCD	c hadrons
е	listen to	almost listen to	listen to	almost listen to
	weighted method	weighted method	LP method	weighted method
μ	listen to	almost listen to	listen to	listen to
	weighted method	weighted method	LP method	LP method
K	listen to	listen to	most listen to	most listen to
	weighted method	LP method	weighted method	LP method
π	listen to	almost listen to	most listen to	most listen to
	weighted method	weighted method	weighted method	LP method
р	most listen to weighted method	listen to LP method	listen to weighted method	almost listen to weighted method

by Whizard

blue: willing to listen to weighted method

pink: willing to listen to LP method

red frame: all source & only from hadron decay : listen to different method

TF percentage of two methods

b jet	ξ _{LP} -1 (right)	ξ _{LP} +1 (wrong)	Total
ξ _{weighted} -1 (right)	50.87%	20.22%	71.09%
ξ _{weighted} +1 (wrong)	10.71%	18.21%	28.92%
Total	61.58%	38.43%	100.01%

c jet	ξ _{LP} +1 (right)	ξ _{LP} -1 (wrong)	Total
ξ _{weighted} +1 (right)	58.43%	11.96%	70.39%
ξ _{weighted} -1 (wrong)	22.75%	6.86%	29.61%
Total	81.18%	18.82%	100%