Measurement of V_{cb} from $WW \rightarrow \mu \nu q q$ at the CEPC

Hao Liang, Yongfeng Zhu, Manqi Ruan

IHEP

Dec. 14 2022

Introduction

- Significance of V_{cb}
 - The normalization of the unitarity triangle
 - New Physics study in B_s/B_d mixing

NP parameter in the $B_d - \overline{B}_d$ mixing

Deviation from unitarity of CKM matrix

e.g. only minimum number of inputs:
$$\begin{split} f_{B_d}, B_{B_d}, \Delta m_d, |V_{ud}|, |V_{ub}|, |V_{cd}|, |V_{cb}|, \gamma \\ \delta(\sqrt{|\Delta_d|} - 1) &= \frac{\delta f_{B_d}}{f_{B_d}} \oplus \frac{\delta \hat{B}_{B_d}}{2\hat{B}_{B_d}} \oplus \frac{\delta \Delta m_d}{2\Delta m_d} \oplus \frac{\delta |V_{ud}V_{ub}^*| \cos^2 \alpha}{|V_{ud}V_{ub}^*|} \oplus \frac{\delta |V_{cd}V_{cb}^*| \cos^2 \beta}{|V_{cd}V_{cb}^*|} \oplus \frac{\delta \gamma \sin \beta \sin \alpha}{\sin \gamma} \end{split}$$

- Significance of V_{cb} at EW energy scale
 - $|V_{cb}|$ via *b*-hadrons decays
 - non-perterbative QCD contribution
 - PDG report the value as 0.0410(14)
 - Larger than both Inclusive and exclusive analysis standalone, since they are in tension about p=1%
 - *V_{cb}* via W decay
 - Perturbatively QCD

Study Setup

- Assumed:
 - Lumi. 5600 fb⁻¹ E = 240 GeV
 - 13 million $\mu v q q$ and 11 thousand $\mu v c b$
- Study $\mu v W$ as first example
 - Cleanness of μ
 - Complementary analysis: evqq and τνqq even qqqq
- Three signals measured simultaneously
 - $W \to cb, W \to c(s+d), W \to u(s+d)$
 - $W \rightarrow ub$ too tiny to access, fixed
- Besides V_{cb}
 - $R_W = Br(W \rightarrow qq)/Br(W \rightarrow l\nu)$ unitarity test:
 - Total norm of first two rows
 - $W \rightarrow cb, W \rightarrow c(s + d), W \rightarrow u(s + d)$ unitarity test:
 - each norm of first two rows

Event selections

• Selection criteria are optimized for statistical uncertainty for $Br(W \rightarrow cb)$

	1	1	(1/)	(1/)	0 1	0 (1/)	0 (1)
	$\mu\nu cb$	$\mu u ub$	$\mu\nu c(d/s)$	$\mu u u(d/s)$	$\mu 3 \nu c b$	$\mu 3 \nu c (d/s)$	$\mu 3 \nu u (d/s)$
w.o. slections	11.3k	102	6.78M	6.78M	2.23k	1.18M	1.18M
$E_{\mathrm{L}\mu} > 12 \mathrm{GeV}$	10.6k	94	6.32M	6.32M	1.5k	834k	829k
$R_{ m L\mu} > 0.95$	9.23k	78	5.52M	5.53M	1.21k	710k	710k
$\cos(\theta_{\mathrm{L}\mu})$	9.23k	78	5.52M	5.53M	1.21k	710k	710k
Second isolation muon veto	9.1k	77	5.5M	5.52M	1.2k	709k	710k
Missing P_T	8.92k	74	5.38M	5.41M	1.13k	685k	686k
multiplicity > 27	8.92k	74	5.37M	5.37M	1.13k	683k	681k
$M_{\rm jets} > 50 {\rm GeV}$	8.86k	74	5.34M	5.35M	1.13k	679k	679k
$M_{ m jets} < 95 { m GeV}$	7.92k	70	4.79M	4.79M	1.05k	616k	613k
efficiency.	0.701(08)	0.682(88)	0.707	0.707	0.470(40)	0.524(02)	0.520(02)
	× /	× /			× /	× /	× /

Table 2: Event selections for signals. The number in the parenthesis are the uncertainties of the last two digits of the efficiencies arise from the statistics of Monte Carlo sample.

	e3 u qq	$ au_{ m had.} 3 u q q$	au au q q	$\mu\mu q q$	other
w.o. slections	2.43M	8.79M	609k	1.25M	364.9M
$E_{\mathrm{L}\mu} > 12 \mathrm{GeV}$	37.3k	190k	118k	790k	13.6M
$\dot{R}_{ m L\mu} > 0.95$	357	9.93k	65.4k	413k	85.1k
Second isolation muon veto	357	9.89k	64.1k	125k	57.9k
Missing P_T	349	9.59k	60.0k	47.7k	46.7k
multiplicity > 27	341	9.51k	59.6k	47.2k	38.0k
$M_{ m jets} > 50 { m GeV}$	318	9.41k	58.8k	45.7k	35.0k
$M_{ m jets} < 95 { m GeV}$	302	8.47k	6.72k	10.7k	4.02k
Eff.	0.000125	0.000964	0.011	0.00854	1.1e-05

Table 3: Event selections for backgrounds.

Jet flavour tagging

A first step to utilize differential information of flavour tagging of **two jets (four variables)** Possible to cross-calibrate of the eff. between regions Boundary between b1 and b2 (0.995): optimized for statistical error of $W \rightarrow cb$

quark \setminus tag	b_1	b_2	c_1	c_2	g_1	g_2
b	0.47	0.378	0.0197	0.0965	0.00397	0.0315
c	0.00042	0.078	0.298	0.373	0.0682	0.182
uds	0.000104	0.00477	0.00145	0.054	0.538	0.401

Flavour tagging at Z-pole Table 5: The flavour tag efficiencies at Z-pole with selected events.

classify events into 21 categories

There are 21 flavour tag paring configurations. Self-calibration nature for e.g. $W \rightarrow u(ds)$, three unknown parameters $N_{u(ds)} \operatorname{Eff}_{uds \rightarrow g_1} \operatorname{Eff}_{uds \rightarrow g_2}$ correlation may be the problem

Extract the signal strength

• The
$$\chi^2 - 2\log(L(S_a)) = \sum_{i=1}^{21} \frac{(\sum_a S_a N_i^a + bkg_i - N_i^{obs})^2}{N_i^{obs}}$$

- Signal strengths S_a obtained by minimizing χ^2
- the $\mu 2\nu (\leftarrow \tau) \nu q q$ has treated as signal
- Signal strengths for $W \rightarrow cb$ and $W \rightarrow c(ds)$ and $W \rightarrow u(ds)$:
 - statistical relative errors : 0.026, 5.9E-4, 5.8E-4
 - Correlation coef.

$$\begin{pmatrix} 1 & -0.077 & 0.020 \\ \cdots & 1 & -0.46 \\ \cdots & \cdots & 1 \end{pmatrix}$$

Result

- $|V_{cb}|$ by $\mu \nu qq$ and $\mu 2\nu (\leftarrow \tau)\nu qq$
 - relative statical uncertainty 1.3%
 - Half of either exclusive or inclusive analysis standalone result ~ 2%. one fourth of the combined result by PDG
 - Global fit good, but in tension....
 - Comparable to V_{cb} accuracy of 1% by the 3.6× $10^6 B_c \rightarrow \nu \tau$ decays from 1 Tera Z at the CEPC arXiv:2007.08234
 - At the FCC-ee by Marie-Helene Schune: 1.9%/1.5% level, aming at 0.4% with 100 million WW pairs above threshold
- The check of unitarity of CKM
 - $\frac{\sum_{j=bds} |V_{cj}|^2}{\sum_{j=bds} |V_{uj}|^2} = \frac{\sum S_j \operatorname{Br}(W_{cj})}{\sum S_j \operatorname{Br}(W_{uj})}$ Statistical error: 0.1%

 - Systematics, need to take care of flavour tagging.
 - self-calibration from data? Correlation between jets? Enough data?

Systematics

- $|V_{cb}|$ by $\mu \nu q q$ and $\mu 2 \nu (\leftarrow \tau) \nu q q$
 - relative statical uncertainty 1.3%

$$|V_{bc}| = \sqrt{\frac{\Gamma_W R_{cb} \operatorname{Br}(W \to qq)}{\alpha_{\operatorname{QCD}} C_{cb}}} \qquad R_{bc} = \frac{\operatorname{Br}(W \to cb) S_{W \to cb}}{\sum_{\operatorname{hadronic}} \operatorname{Br}(a) S_a} \qquad c_{\operatorname{QCD}} = 1 + \sum_n c_n \alpha_s^n (M_W^2)$$

neglect the mass of quarks $C_{ij} = C$, where $C = G_F M_W^3 / (6\pi \sqrt{2})$.

	relative uncertainty	contribution to $\delta \ln V_{cb} $
Γ_W at CEPC	0.1%	0.05%
Γ_W assuming CKM unit.[dJ20]	0.06%	0.03%
$lpha_s(W_W^2)$	$< 10^{-2}$	$< 10^{-3}$
${ m Br}(W o qq)$	$< 10^{-3}$	$< 10^{-3}$
Events selections efficiencies	$< 10^{-3}$	$< 10^{-3}$
Flavour tag efficiencies	$??? \times 10^{-3}$	$??? \times 10^{-3}$
Statistics		1.3%
Total		$??? \times 10^{-2}$

Table 4: Uncertainties for $|V_{cb}|$.

Extreame cut on *b*-likeliness

- Signal:
 - $b \rightarrow b_1, c \rightarrow c_{1,2}$ for signal, maybe calibrated from data
- Backgrounds:
 - $\mu\nu W, W \rightarrow c + d/s \text{ and } ZZ \rightarrow \mu\mu bb$
 - need to estimate the tag eff. $d/s \rightarrow b_1$ and $b \rightarrow c_1/c_2$
 - Which process this eff. dominate?
- Extreame cut on *b*-likeliness > 0.999
 - relax the requirement of relative systematical error of backgrounds
 - Relative statistical error for $S_{W \to cb}$: 3.1% (optimal one: 2.6%)

Extrapolation for flavour tagging performance

- Migration matrix M_{ij}
 - the *i* quark tagged as label *j*.
- mimic data with:
 - $N_{t_1t_2} = \sum_{ij} N_{ij} M_{it_1} M_{jt_2} (2 \delta_{t_1t_2})$
- Trace of the migration matrix
 - $\operatorname{Tr}(M) = M_{bb_1} + M_{bb_2} + M_{cc_1} + M_{cc_2} + M_{uds,g_1} + M_{uds,g_2}$
 - characterizing the tagging performance
- Extrapolation
 - Linear mix the baseline and `unit` matrix to obtain migration matrix with other trace

Questions still kept in mind and more?

- $b \rightarrow b_1, c \rightarrow c_{1,2}$ for signal, possibly calibrated from data?
- How to check the MC tag eff. $d/s \rightarrow b_1$ and $b \rightarrow c_1/c_2$ with data?
- How much the full hadronic WW process contribute?
 - Considering 13 million semi-hadronic, 40 million full-hadronic.
 - Unlikely overwhelm the semi-hadronic
 - Jet confusion?
- Analysis beyond average flavour tagging eff?
 - E.g. binning with Pt?
- where analysis beyond jets level will lead us to?
- Other SM process contribution to μvqq not via two on-shell WW decay, can be ignored, for the purpose of projecting future precision.

thanks

Study Setup

- Assumed:
 - Lumi. 5600 fb⁻¹
 - *E* = 240 GeV
- Study $\mu\nu W$ as first example
 - Cleanness of μ
 - Complementary analysis: *evqq* and *τvqq* even *qqqq*
- Three signals measured simultaneously
 - $W \to cb, W \to c(s+d), W \to u(s+d)$
 - $W \rightarrow ub$ too tiny to access, fixed
- Besides V_{cb}
 - $R_W = Br(W \rightarrow qq)/Br(W \rightarrow l\nu)$ leading to either α_s assuming unitary of CKM or inclusive unitarity check of the first two rows of CKM i.e. $\sum_{i=u,c;j=dsb} |V_{ij}|^2 = 2$
 - $W \to cb, W \to c(s+d), W \to u(s+d)$ leading to unitarity check of each of first two rows. $\sum_{j=dsb} |V_{uj}|^2 = \sum_{j=dsb} |V_{cj}|^2 = 1$

At z-pole correlations of flavour tagging between jet pair for selected events by jet mass

simple demonstration of the clibrtion at Z-pole

$$N_{ij} = \sum_{a=bb,cc,uds \times 2} C_{a,i,j} N_a M_{ai} M_{aj} (2 - \delta_{ij})$$

 $\chi^2 = \sum_{i} \frac{(N_{ij}(M_{a,k}) - N_{\text{obs},ij})^2}{N_{\text{obs},ij}}$

- [1.0048 0.9967 0.9867 0.9947 0.962 0.9969 0.9999 1.0124 1.0072 1.0817 1.0099 1.0421 1.0156 0.8822 0.9901 1.0027 0.9537 0.98 0.68 0.8872 1.0092]
- $C = \begin{bmatrix} 1.0052 \\ 1.0256 \\ 1.2518 \\ 1.0365 \\ 0.9994 \\ 1.0232 \\ 1.0039 \\ 1.0021 \\ 0.998 \\ 1.001 \\ 0.9661 \\ 0.9754 \\ 0.9999 \end{bmatrix}$
 - [0.9988 1.2378 0.9981 1.199 0.9283 1.0253 1.4116 0.9888 1.0486 0.993 0.9954 0.9264 1.091 0.9925 0.9988 1.0767 0.9896 1.0026 1.0055 0.9942 1.0075]

normalized to 10 million Z boson bb cc lightx2 signal mean: [0.9999315462613185 0.9999642961814725 1.0000400331912618] signal std: [0.000912530662729489 0.000542980735944649 0.000480487473924341]

$$\delta \ln M = \begin{pmatrix} 0.839 & 2.82 & 1.91e + 02 & 38.0 & 1.44e + 03 & 95.1 \\ -5.98e + 03 & 75.7 & 1.8 & 1.78 & 1.18e + 02 & 32.6 \\ -1.5e + 05 & 2.84e + 02 & 8.83e + 02 & 23.2 & 0.645 & 1.74 \end{pmatrix} \times 10^{-3}$$

	0.47	0.378	0.0197	0.0965	0.00397	0.0315
M =	0.00042	0.078	0.298	0.373	0.0682	0.182
	0.000104	0.00477	0.00145	0.054	0.538	0.401

M_extracted_mean/M_truth*

[[0.9998958945189709 1.0000364428728372 1.004587776020042 1.000912119409266 0.9729958565307091 0.9988633138169138] [0.6251331324126443 0.9982743612709353 0.9997646647958848 1.0000002464824151 1.0035699665385738 1.0006498410427873] [1.6958956944595756 1.0318445873901592 0.9855574069054088 1.0021931172458023 0.9943371806922174 1.0067934426955516]]