

中國科學院為能物路納完備 Institute of High Energy Physics Chinese Academy of Sciences

Jet Charge at CEPC

Hanhua Cui Manqi Ruan cuihanhua@ihep.ac.cn

CEPC Physics and Detector Plenary Meeting December 14, 2022

Outline

- Jet Charge Introduction & CEPC Samples
- Methods & Dependences
 ★ Leading Particle method (LPJC)
 ★ Weighted Charge method (WCJC)

• Combination:

- ★ Decision level combination
- ★ Tagger level combination
- \star Total combination

Conclusion

Jet charge experiments & methods

	Experiments	Methods
LEP SLC	17 (0.6) million Z decays at LEP (SLC) Z pole	prompt lepton weighted jet and vtx charge Kaon
BABAR	integrated luminosity of 425.7 fb ⁻¹ , Y (4S) resonance.	category based method with NN
Belle2	integrated luminosity of 62.8 fb ⁻¹ , Y(4S) resonance	category based method & DNN ε _{eff} (B ⁰)=30.05%
LHCb	integrated luminosity of 3 fb ⁻¹ , $\sqrt{s} = 8$ TeV	OS(e, μ, K, charm, Q _{vtx}) Taggers SS(SSπ, SSp, SSK) Taggers
ATLAS CMS	integrated luminosity of 14.3(19.7) fb ⁻¹ , $\sqrt{s} = 8$ TeV	weighted jet charge
CEPC	integrated luminosity of 100 ab ⁻¹ , Z pole	leading particle method - e, μ, Κ, π, p weighted jet charge (for Bs: OS SSK)

CEPC Z pole & Sample

Applications of Jet Charge:

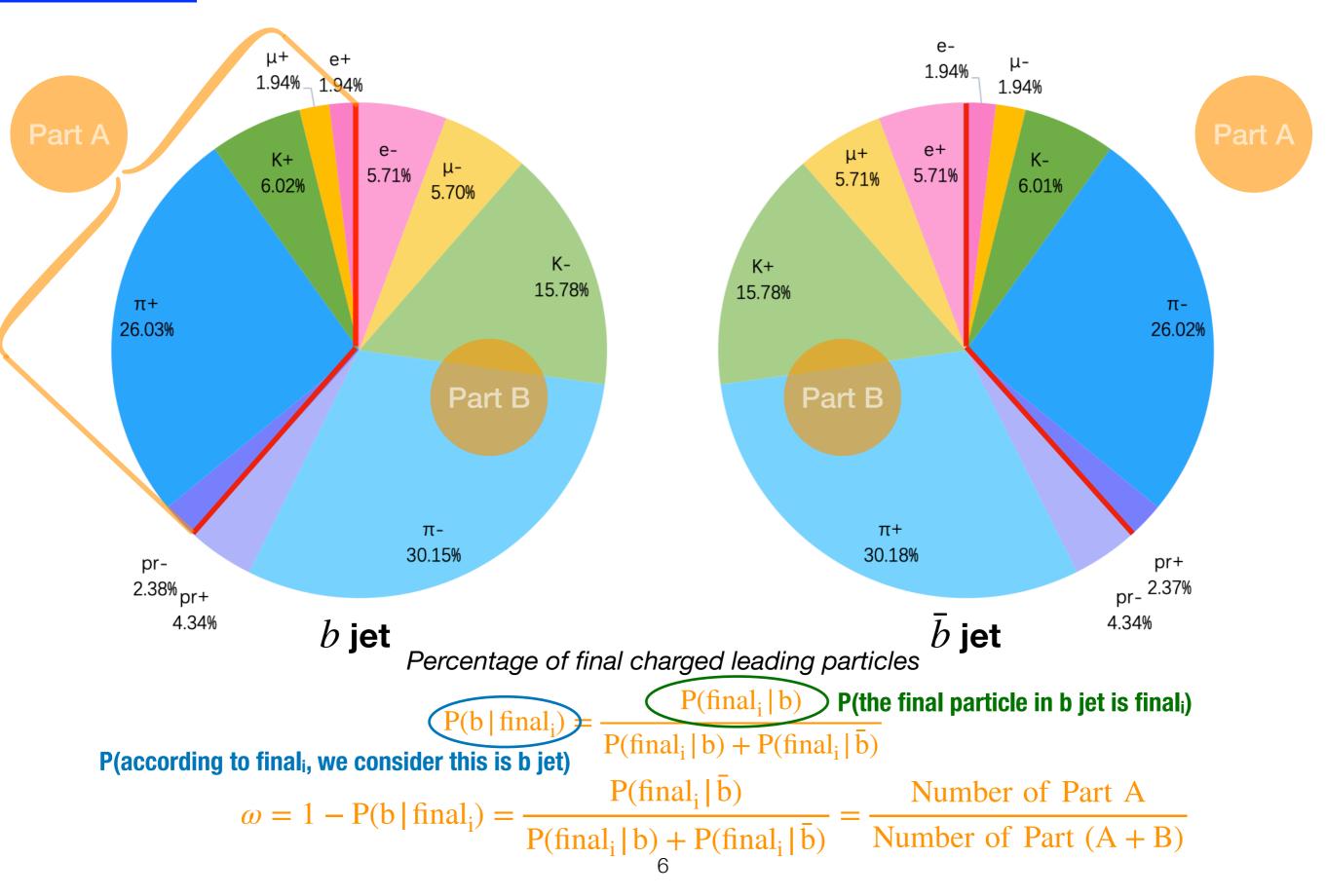
- Electroweak measurements of A_{FB} , $\sin^2 \theta_W$
- Time dependent CP measurements in neutral B/D system
- Differential measurements

CEPC Advantages:

- High productivity of b/c hadrons
- Clean collision environment
- Good VTX/tracking and PID system

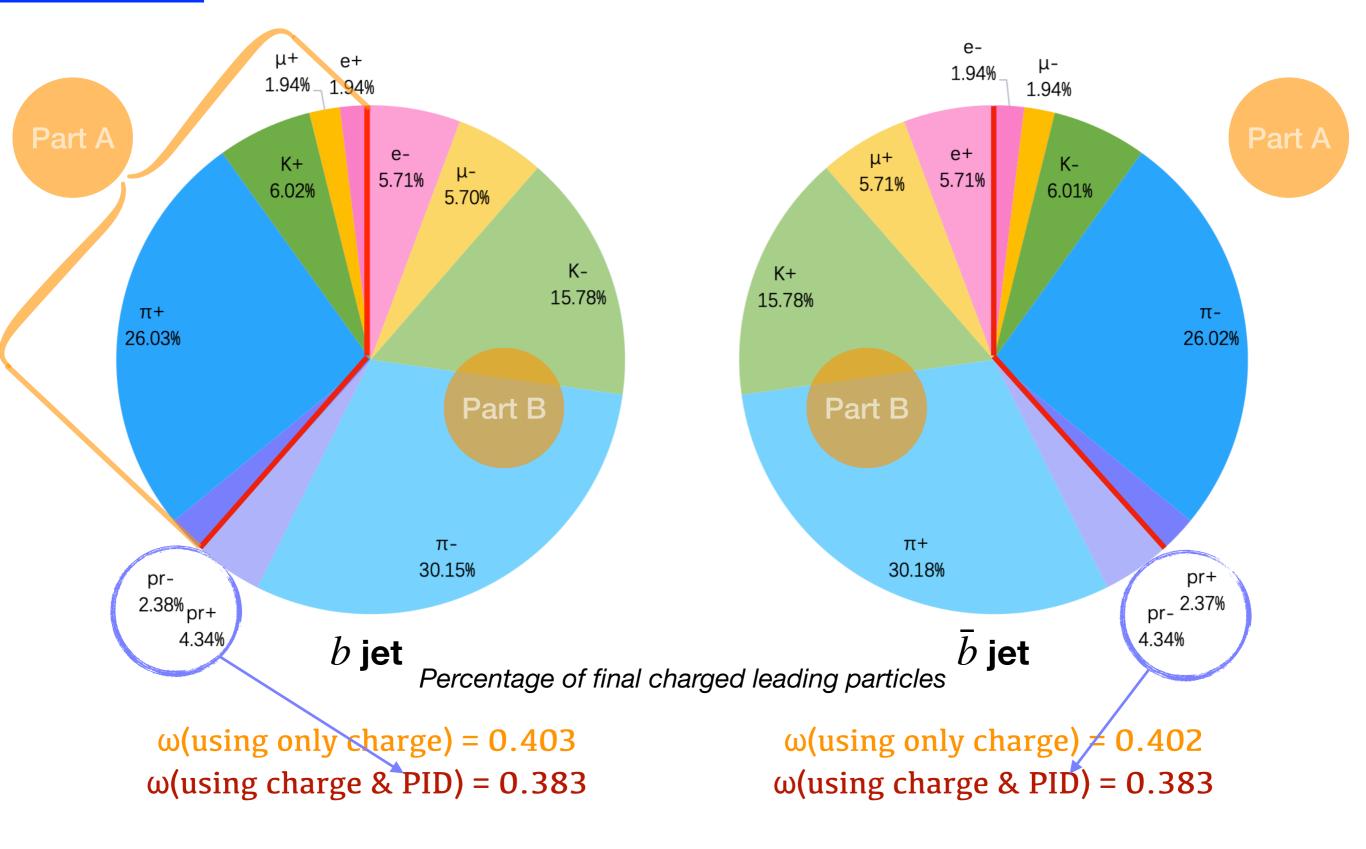
Our work: jet charge performance at CEPC Z pole using leading particle method & weighted charge method in each jet - test of principle

Samples : CEPC Z pole (91.2 GeV) heavy flavor jet :


Sample	Whizard195	Herwig	Sherpa
Z→bb	1×10 ⁷	1×10 ⁶	1×10 ⁵
Z→cc	1×10 ⁷	1×10 ⁶	1×10 ⁵

Definition of effective tagging power

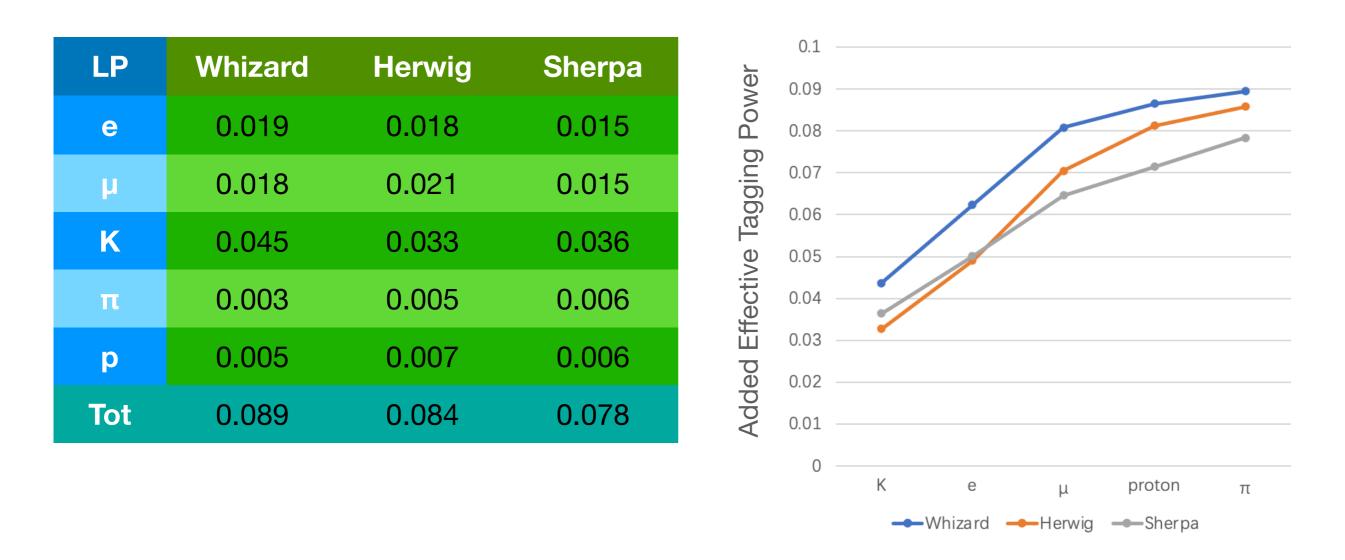
$$\begin{split} \varepsilon &= \frac{N^{\text{tag}}}{N} \\ N_{B^0}^{\text{tag}} &= \varepsilon (1 - w) N_{B^0} + \varepsilon w N_{\bar{B}^0} \\ N_{\bar{B}^0}^{\text{tag}} &= \varepsilon (1 - w) N_{\bar{B}^0} + \varepsilon w N_{B^0} \\ a_{\text{CP}}^{\text{obs}} &= \frac{N_{B^0}^{\text{tag}} - N_{\bar{B}^0}^{\text{tag}}}{N_{B^0}^{\text{tag}} + N_{\bar{B}^0}^{\text{tag}}} = (1 - 2w) \cdot \frac{N_{B^0} - N_{\bar{B}^0}}{N_{B^0} + N_{\bar{B}^0}} = (1 - 2w) \cdot a_{\text{CP}} \\ \delta a_{\text{CP}} &= \frac{\delta a_{\text{CP}}^{\text{obs}}}{1 - 2w} \qquad \delta a_{\text{CP}}^{\text{obs}} \frac{N_{B^0}^{\text{tag}} \approx N_{\bar{B}^0}^{\text{tag}}}{\sqrt{N^{\text{tag}}}} \frac{1}{\sqrt{N^{\text{tag}}}} \\ \delta a_{\text{CP}} &= \frac{1}{\sqrt{N^{\text{tag}}}(1 - 2w)} \\ \varepsilon_{\text{eff}} &= \frac{N^{\text{tag}}}{N} \cdot (1 - 2w)^2 = \varepsilon \cdot r^2 \\ \varepsilon_{\text{eff}} &= \sum_i \varepsilon_{\text{eff},i} = \sum_i \varepsilon_i \cdot (1 - 2w_i)^2 \end{split}$$


 $Z \rightarrow b\bar{b}$

How to calculate misjudgment rate ω

 $Z \rightarrow b\bar{b}$

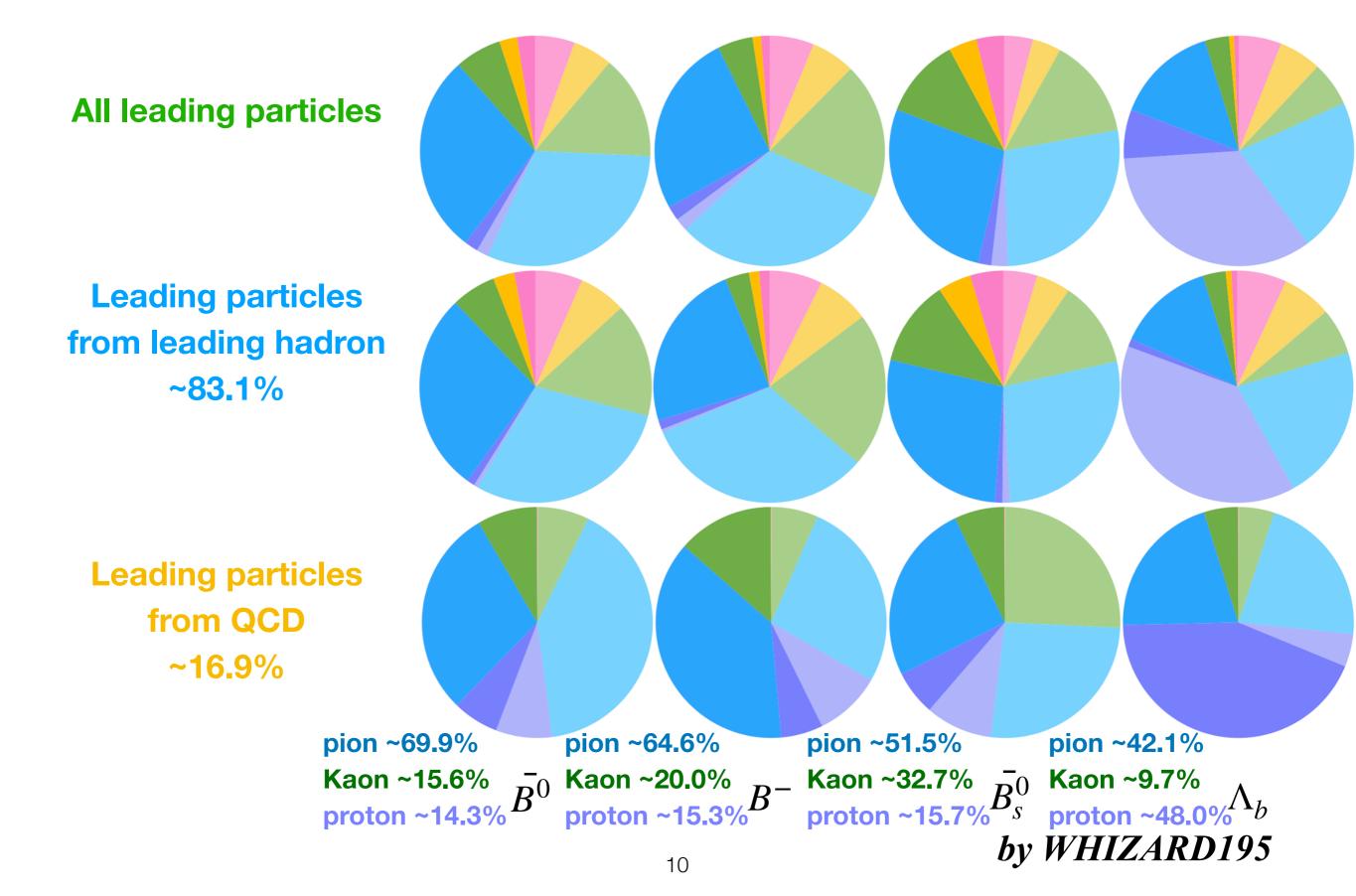
Dependence on leading particle type



Dependence on leading particle type

 $Z \rightarrow c\bar{c}$

Leading particle method (LPJC)

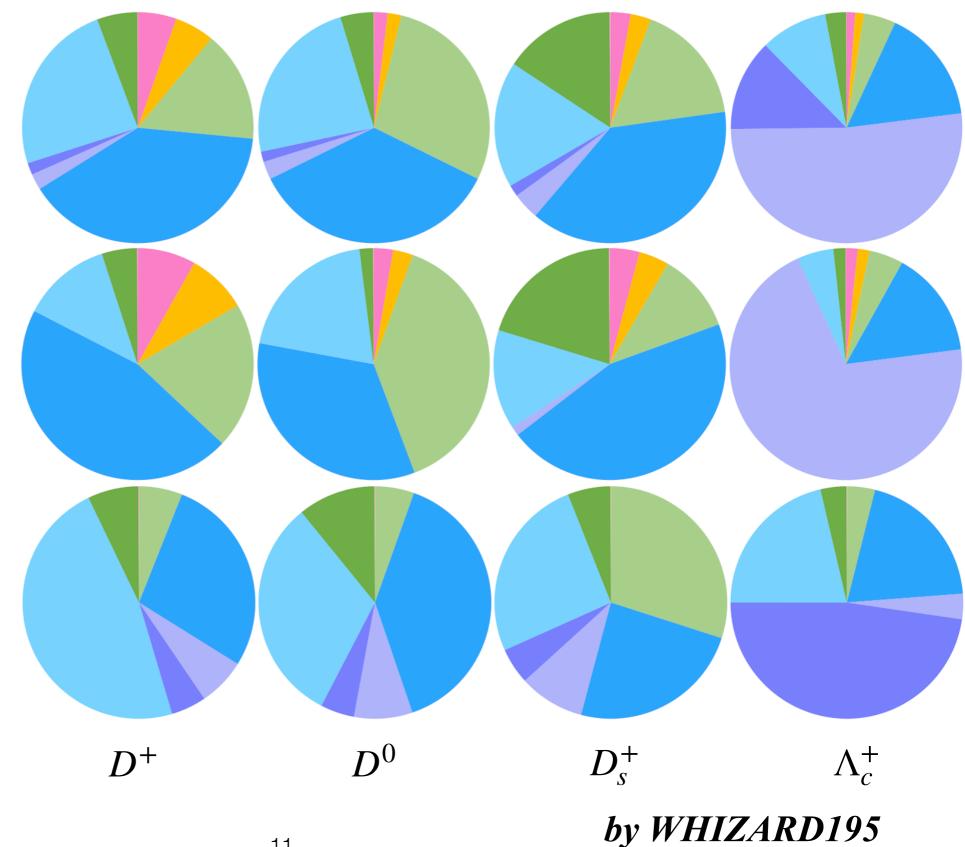


Dependence on leading particle type

Dependence on b/c hadron type

Dependence on decay source of leading particle: hadron or QCD.

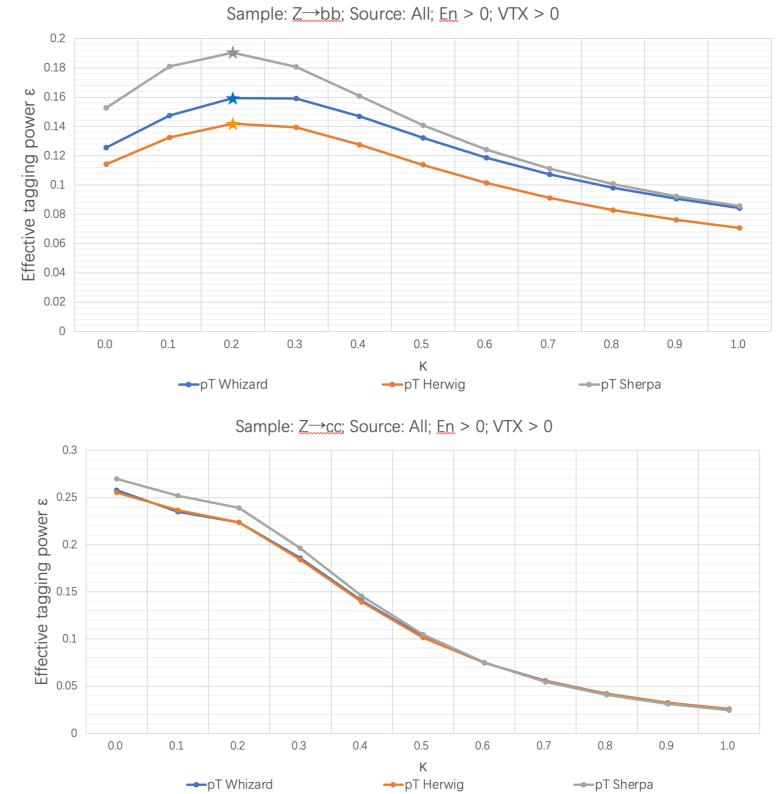
Percentage of leading particles (*b* **jet, Whizard195)**



Percentage of leading particles (*c* **jet, Whizard195)**

All leading particles

Leading particles from leading hadron


Leading particles from QCD

Weighted charge method (WCJC) $Q_{jet}^{\kappa} = \frac{\sum_{i} (E_i)^{\kappa} Q_i}{\sum_{i} (E_i)^{\kappa}}$

- Use the charge and momentum of all final charged particles in a jet with a weight parameter к to calculate Q_{jet}^κ.
- if $Q_{jet} < 0$, we consider this is a b quark, and vise versa.
- the weight parameter κ is \bullet different for each hadron type.

Methods	Optimized ĸ								
Generator	Whi	zard	Her	wig	Sherpa				
source	all	all from B/		from B/ D	all	from B/ D			
All b hadrons	(ĸ=0.2)	(к=0)	(ĸ=0.2)	(к=0)	(ĸ=0.2)	(к=0)			
B0/ B0bar	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.3)	(к=0.6)			
B+/B-	(ĸ=0.3)	(ĸ=0)	(ĸ=0.4)	(ĸ=0)	(ĸ=0.3)	(ĸ=0)			
Bs/ Bsbar	(ĸ=0)	(ĸ=0)	(к=0)	(ĸ=0)	(ĸ=0.2)	(ĸ=1.0)			
Bc+/Bc-	(ĸ=0.2)	κ=0.2) (κ=0)		(ĸ=0)	(ĸ=0.6)	(ĸ=0)			
Ab/ Abbar	(ĸ=0)	(ĸ=1.0)	(ĸ=0)	(ĸ=0.9)	(ĸ=0)	(ĸ=0)			

Combination

Decision level combination of two methods

LP	JC	Der	ξ = +1	ξ = +1	ξ = -1	ξ = -1	ξ = +1	ξ = -1	Only	two deci	sions	Only	one dici	sion	Total
wc	CJC	Per	ξ = +1	ξ = -1	ξ = +1	ξ = -1	ξ = 0	ξ = 0	ω	€tag	€eff	ω	€tag	€ _{eff}	€ _{eff}
	е	7.65%	15.71%	9.64%	6.63%	68.03%	0.00%	0.00%	18.76%	6.40%	0.025				0.025
	μ	7.65%	15.68%	9.72%	6.62%	67.97%	0.00%	0.00%	18.75%	6.40%	0.025				0.025
h iot	K	21.81%	15.53%	12.09%	10.93%	61.45%	0.00%	0.00%	20.18%	16.79%	0.060				0.060
b jet	π	56.18%	20.55%	25.77%	11.17%	42.51%	0.00%	0.00%	32.59%	35.43%	0.043				0.043
	р	6.72%	6.09%	16.54%	11.49%	28.24%	12.81%	24.82%	17.75%	2.31%	0.010	34.04%	2.53%	0.003	0.012
	Total	100.00%	17.74%	19.70%	10.44%	49.58%	0.78%	4.11%	25.45%	67.32%	0.162	34.04%	2.53%	0.003	0.165
	е	2.72%	91.76%	6.33%	0.35%	1.55%	0.01%	0.00%	1.66%	2.54%	0.024				0.024
	μ	2.73%	93.09%	6.44%	0.08%	0.39%	0.01%	0.00%	0.41%	2.55%	0.025				0.025
o iot	К	28.38%	43.59%	10.32%	10.95%	2.60%	26.14%	6.41%	5.62%	13.11%	0.103	19.69%	9.24%	0.034	0.137
c jet	π	57.28%	33.49%	7.84%	20.90%	5.23%	19.84%	12.70%	13.50%	22.18%	0.118	39.04%	18.64%	0.009	0.127
	р	8.88%	62.43%	9.65%	14.79%	13.13%	0.01%	0.00%	17.38%	6.71%	0.029				0.029
	Total	100.00%	42.14%	8.63%	16.41%	4.95%	18.05%	1.66%	10.17%	47.09%	0.299	30.38%	27.87%	0.043	0.342

Tagger level combination of two methods

Input final particle candidate i

get its PID

get ω_i (j=LPJC), ω_i (j=WCJC), decision ξ_i (j=LPJC), ξ_i (j=WCJC)

for method j, if $\xi_{i,j} = 0$, $s_{i,j} = 0$

if two $\xi_{i,j} = 0$, for smaller $\omega_{i,j}$, $s_{i,j} = 1$, for larger $\omega_{i,j}$, $s_i = 0$

put $s_{i,j}$, $\xi_{i,j}$, $\omega_{i,j}$ in this formula and get combined ϵ_{eff}

$$\epsilon_{ETP_{comb}} = \sum_{i=1}^{N_{candidate}} \sum_{j=1}^{N_{method}} s_{i,j} |\xi_{i,j}| (1 - 2\omega_{i,j})^2$$

 $S_{i,i}$ is the decision weight of j-th method for i-th candidate.

 $\omega_{i,i}$ is the mis-judgment rate ω of j-th method for i-th candidate.

 $\xi_{i,i}$ is the tagging decision of j-th method for i-th candidate.

The tagging decision ξ_i takes the value of

- +1 when the candidate is tagged as \bar{b} jet
- –1 when the candidate is tagged as b jet
- 0 when the candidate is untagged

Tagger level combination of two methods

Method	Tagger	К	ε _{tag} =N _{tag} /N	ω _i =N _w /N _{tag}	$ar{\omega}$	r ²	€ _{eff}
	е		7.70%	25.45%		0.241	0.019
LPJC	μ		7.70%	25.53%		0.239	0.018
	K		21.97%	27.45%		0.203	0.045
	π		56.33%	46.34%		0.005	0.003
	р		6.30%	36.45%		0.073	0.005
	Total		100.00%	38.35%	35.06%	0.089	0.089
WCJC	All	2	100.00%	30.04%		0.159	0.159
	е	4	7.70%	22.36%		0.306	0.024
WCJC	μ	4	7.70%	22.35%		0.306	0.024
combined	K	4	21.97%	26.32%		0.224	0.049
with LP	π	2	56.33%	31.61%		0.135	0.076
PID	р	0	3.92%	27.94%		0.195	0.008
	Total		97.62%	28.13%	28.52%	0.185	0.180
	е		7.65%	22.33%	22.36%	0.306	0.023
	μ		7.65%	22.31%	22.35%	0.306	0.023
Total	K		21.81%	26.46%	26.32%	0.224	0.049
Combined	π		56.18%	31.72%	31.61%	0.135	0.076
	р		6.72%	30.40%	30.57%	0.151	0.010
	Total		100.00%	29.05%	28.68%	0.182	0.182

Tagger level combination of two methods

Method	Tagger	К	ε _{tag} =N _{tag} /N	ω _i =N _w /N _{tag}		r²	ε _{eff}
	е		2.75%	1.90%		0.926	0.025
	μ		2.76%	0.47%		0.981	0.027
LPJC	K		28.70%	19.73%		0.367	0.105
LFJC	π		57.56%	38.79%		0.050	0.029
	р		8.22%	28.00%		0.194	0.016
	Total		100.00%	30.36%	27.49%	0.203	0.203
WCJC	All	0	67.39%	19.07%		0.383	0.258
	е	10	2.75%	7.89%		0.709	0.020
WCJC	μ	10	2.76%	6.84%		0.745	0.021
combined	K	0	19.36%	18.99%		0.385	0.074
with LP	π	0	38.80%	19.11%		0.382	0.148
PID	р	3	8.22%	22.77%		0.297	0.024
	Total		71.89%	13.37%	18.41%	0.399	0.287
	е		2.72%	1.91%	1.90%	0.926	0.025
	μ		2.73%	0.46%	0.47%	0.981	0.027
Total	K		28.38%	19.32%	19.18%	0.380	0.108
Combined	π		57.28%	25.77%	21.49%	0.325	0.186
	р		8.88%	22.78%	22.77%	0.297	0.026
	Total		100.00%	22.33%	19.49%	0.372	0.372

Total combination results

Tagger			ε _{tag}	ω	ε _{eff}
	е	Decision Level	6.40%	18.75%	0.025
	μ	Decision Level	6.40%	18.75%	0.025
b ict	к	Decision Level	16.79%	20.11%	0.060
b jet	π	Tagger Level	56.18%	31.61%	0.076
	р	Decision Level	2.31%	13.96%	0.012
	Total		88.08%	26.29%	0.198
	е	Tagger Level	2.72%	2.10%	0.025
	μ	Tagger Level	2.73%	0.29%	0.027
c iet	К	Decision Level	22.35%	10.85%	0.137
c jet	π	Tagger Level	57.28%	21.51%	0.186
	р	Decision Level	6.71%	17.13%	0.029
	Total		91.80%	16.83%	0.404

by Whizard

Comparison with other experiments

1.0 1.0 1.0 1.0 LHCb unofficial Belle $\sin(2\phi_1)$ LHCb $B^0 \rightarrow D^+ D^-$ 0.9 0.9 60% 0.8 0.8 0.8 0.8 BaBar $B^0 \rightarrow c\bar{c}K^{*0}$ 0.7 0.7 SS π LHCb $B^0_s \rightarrow J/\psi \phi$ 10%. -10% 4010 000 0.6 0.6 0.6 0.6 • SS K \star $\varepsilon_{\mathrm{tag}}$ -0.5 ^{Ha} -0.5 ^{Ha} 0.4 0.4 0.4 0.4 • SS *p* 20% 20% LHCb $B^0 \rightarrow J/\psi K_S^0$ 0.3 0.3 0.2 0.2 0.2 0.2 • Q_{vtx} ATLAS $B_{\rm s}^0 \rightarrow J/\psi \phi$ 0.1 0.1 Kμ LHCb unofficial 0.0 - **-**0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.1 0.5 ω ω CEPC b jet (inclusive) 19.8% CEPC b jet (inclusive) 19.8%

 $\varepsilon_{\mathrm{tag}}$

CEPC c jet (inclusive) 40.4%

CEPC Bs \rightarrow J/ $\Psi\Phi$ 20.2% (by Mingrui)

CEPC b quark→lepton 5.0%

+ ★ + ★ + ★

CEPC b quark→Kaon 6.0%

CEPC b quark \rightarrow pion 7.6%

CEPC b quark → proton 1.2%

Conclusion

Analysis of jet charge performance for single jet at CEPC Z pole:

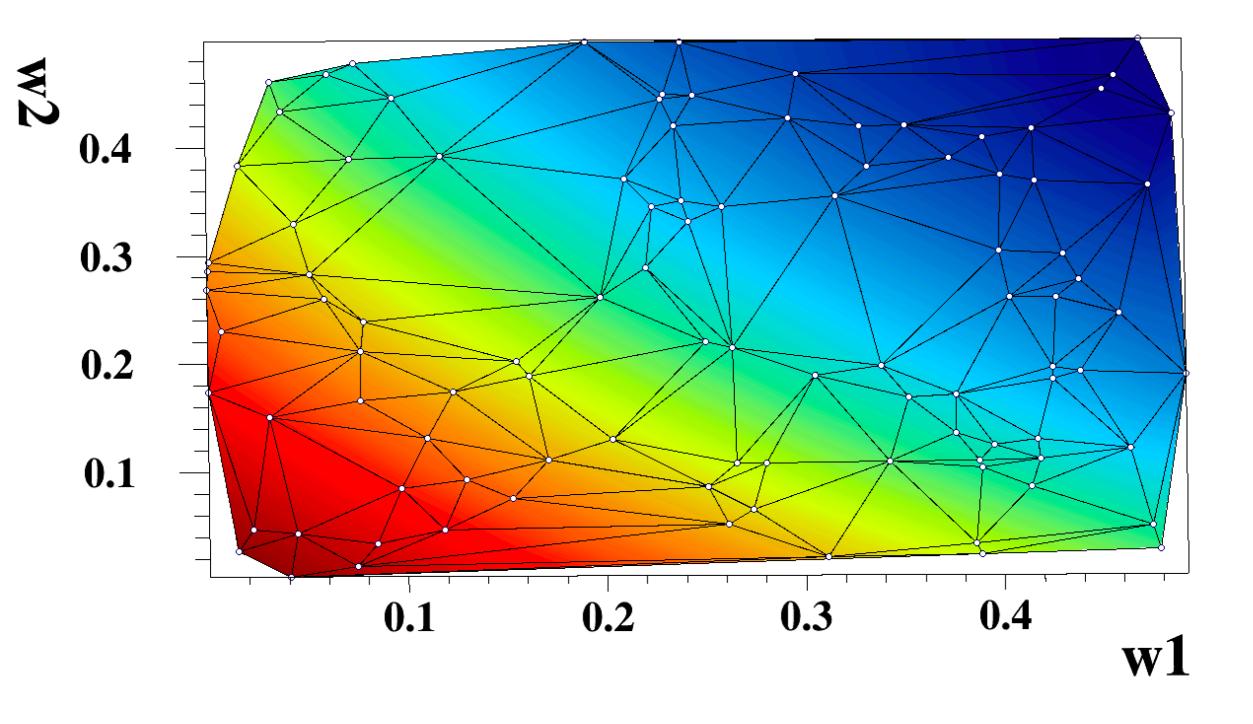
- ★ Effective tagging power:
- ★ LPJC method: 0.089 / 0.203 for b/c jet
- ★ WCJC method: 0.159 / 0.258 for b/c jet
- ★ Decision level combination: 0.165 / 0.342 (improve 3.8% / 32.6%) for b/c jet
- ★ Tagger level combination: 0.182 / 0.372 (improve 14.5% / 44.2%) for b/c jet
- ★ Total combination: 0.198 / 0.404 (improve 24.5% / 56.6%) for b/c jet

★ Dependences:

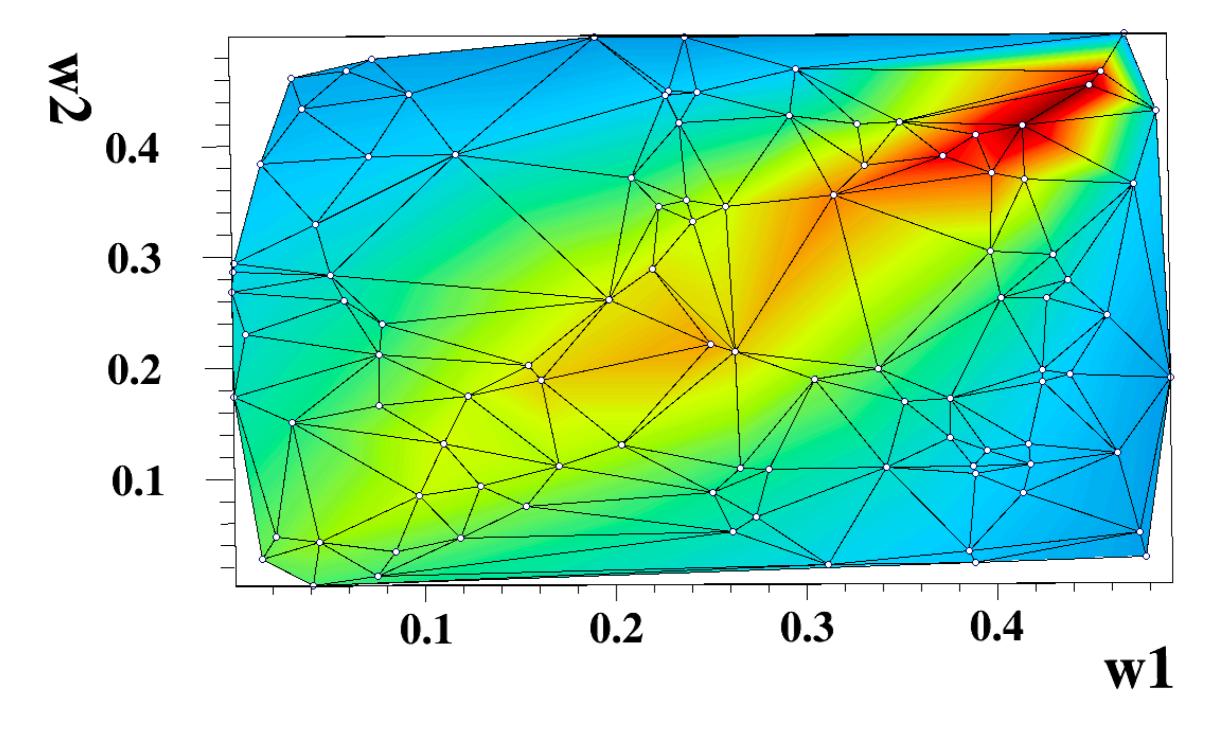
- High dependence on leading particle type.
- High dependence on b/c hadrons type, especially for B_s (Mingrui), Λ_b , Λ_c , ...
- High dependence on the decay source of leading particle.

Valuable suggestions from everyone:

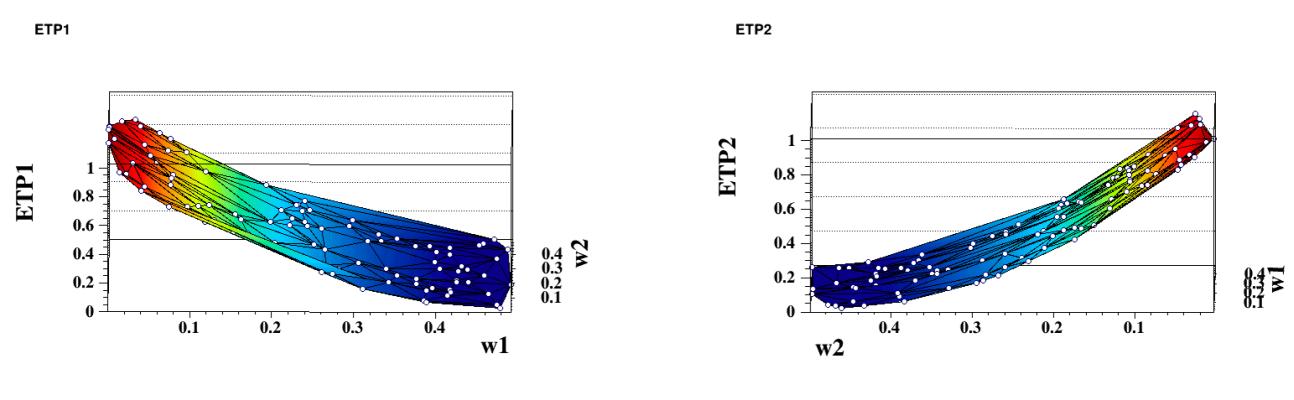
Take into account hadron decay Include charged 2rd/3rd vertex Understand fragmentation method of diff. generator Jet charge vs c.m.s energy Analysis on the dependency of detector performance.

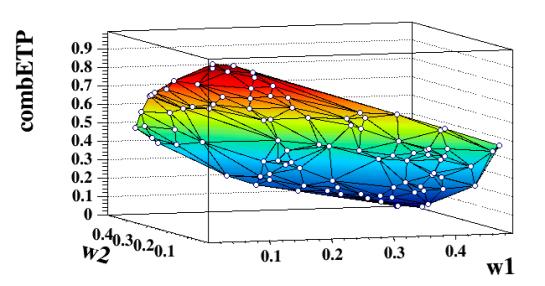


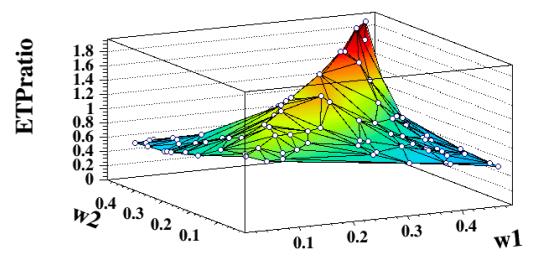
Back Up


TF percentage of two methods

b jet	ξ _{LP} -1 (right)	ξ _{LP} +1 (wrong)	Total	c jet	ξ _{LP} +1 (right)	ξ _{LP} -1 (wrong)	Total
ξ _{weighted} -1 (right)	50.87%	20.22%	71.09%	ξ _{weighted} +1 (right)	58.43%	11.96%	70.39%
ξ _{weighted} +1 (wrong)	10.71%	18.21%	28.92%	ξ _{weighted} -1 (wrong)	22.75%	6.86%	29.61%
Total	61.58%	38.43%	100.01%	Total	81.18%	18.82%	100%


Decision level combined $\epsilon_{eff} vs \omega_1 \omega_2$


ε_{eff} ratio = ε_{eff} (combined)/ ε_{eff} (better single method) vs $\omega_1 \omega_2$


$\varepsilon_{eff}(method 1), \varepsilon_{eff}(method 2), \varepsilon_{eff}(combined), \varepsilon_{eff}(ratio vs \omega_1 \omega_2)$

combETP

ETPratio

25