

董明义 On behalf of the working group

2022.12.28

- 束流望远镜简介
- CSNS 质子实验束束流望远镜设计
 - 结构设计
 - 性能模拟
 - 读出系统
- •总结

硅像素探测器束流测试

- 实验束可以提供单能、准直的单粒子,能够模拟对撞反应的模态粒子在探测器中的响应
- 通过拟合待测芯片(DUT)测得的粒子击中位置与粒子参考径迹在DUT上的交点间的残差来确定DUT的位置分辨率
- 束流参数:
 - 束流能量,能散
 - 束斑尺寸
 - 事例率

東流望远镜

- 束流测试中提供粒子参考径迹的系统称为束流望远镜
- 位置灵敏探测器位置分辨率研究不可缺少的测试平台

- 主要参数:
 - 灵敏面积: 各层组灵敏区的重叠面积, 最好与束斑面积匹配
 - 物质量: 物质量越低, 多次散射效应越小, 有利于提高测量精度
 - 位置分辨:决定参考径迹的位置测量精度,较高的位置分辨可以减小测试系统误差
 - 读出速度: 决定系统可以工作的最高计数率
 - · 探测效率: 束流望远镜系统探测效率越高,同样的事例数需要相对越短的束流时间

空间分辨

- 空间分辨率决定对待测参考粒子径迹的位置测量精度, 束流望远镜的核心指标
 - 像素尺寸
 - 物质量

国际上的束流望远镜

芯片	FE-14	TimePix3	MuPix7	EUDET (MIMOSA26)
芯片类型	混合型	混合型	单片型	单片型
芯片像素尺寸 (µm ²)	50×250	55×55	80×80	18.4×18.4
灵敏区面积(mm ²)	16.8×20	14×14	20.5×20.5	21.2×10.6
层物质量(% X ₀)	0.45	0.5	0.06	0.07
探测效率	99%	96%	98%	99.5%
径迹位置分辨率 (μm)	8.3@180GeV	2@180GeV 400 @50MeV	12@180GeV 18@4GeV 150@50MeV	1.33@180GeV 1.83@6GeV 180 @50MeV
最大触发率	6kHz	60Hz	1MHz	3.9kHz

EUDET-type 束流望远镜

- EUDET束流望远镜是欧盟FP6研究计划(6th Framework Programme)支持下开发的,使用的是IPHC研发的 MIMOSA26单片型硅像素芯片
- 共6层,包含芯片板(铝盒内)、读出板,冷却结构等

CSNS 质子实验束束流望远镜设计

- 硅像素、硅微条等芯片的性能测试 研究
- 为DUT提供高精度粒子参考径迹

设计参数

Parameters	Design requirement	
layers	6	
Active area /layer	≥ 3 cm ²	
Position resolution	≤ 10 µm	
Hit rate	~1kHz	
Material budget	50 μm silicon + <100μm kapton	

Simulation

Simulation

DUT:像素尺寸20.7×20.7µm²,厚度50µm 能量1.6GeV

11

Simulation

Resolution VS Telescope gap

改变DUT与前后望远镜系统间距, 红线像素尺寸25×25µm^{2,}厚度150µm, 蓝线像素尺寸25×25µm²,厚度50µm, 粉红像素尺寸20.7×20.7μm²,厚度50μm

改变望远镜系统各层间距, 红线像素尺寸25×25µm^{2,}厚度150µm, 蓝线像素尺寸25×25μm²,厚度50μm, 粉红像素尺寸20.7×20.7μm²,厚度50μm

• 实现芯片在PCB上精确定位

芯片板

系统时钟板

数字读出板

触发扇出板

数据重建

支撑机械结构初步设计

相关预研及测试

MIMOSA28

TaichuPix

进度安排

CDR

• The schedule will be further improved, and each step may be finished in advance

commissioning

construction

EDR

running

小结

- •进行了质子实验束束流望远镜的初步设计
- 模拟结果显示对于1.6GeV质子束,6层探测器可以实现约5μA的空间分辨
- •开始进行关键部件研制

