高能质子束能量测量方案设计

梁志均 中国科学院高能物理研究所

质子束能量测量探测器

质子束流动量测量

质子能量分辨率好于1%

传感器方案: LGAD传感器

- LGAD是近年出现新型硅传感器,可以高精度测量时间(20-30皮秒)
- 与APD 和 SiPM比较, LGAD has 适中的增益 (10-50)
 - > 信噪比高 , 无自触发

Anode

Ring

ш

> 减薄耗尽区(漂移区),提高电场与电子漂移速度

 \rightarrow the ratio S/N becomes worse at higher gain

传感器方案: 国产LGAD传感器

▶ 拟采用高能所研发出大面积国产低增益雪崩放大传感器(LGAD)
 ▶ 对比SiPM, LGAD没有自触发, 信噪比高, 雪崩增益~50
 ▶ 高能所负责版图设计, 工艺设计, 测试, 微电子所流片
 ▶ 传感器尺寸: 2cm×2cm (15 × 15像素)

超快传感器原理

单个LGAD传感器

 $\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)^2$

传感器方案: 国产LGAD传感器(2)

▶针对CERN的LHC质子对撞机上ATLAS实验时间探测器的应用

- 通过掺碳工艺加固, 辐照后移除率目前最低, 即最佳的抗辐照性能
- 性能显著超越日本滨松公司的LGAD硅传感器
- 首个国产传感器在LHC实验上使用
- 非常适用于高能质子束能量测量

高能所研制的LGAD辐照移除率最低(最佳抗辐照性能)

硼移除速率 vs 掺碳浓度

[[]G.Paternoster, FBK, Trento, Feb.2019]

LGAD辐照后的性能

可以承受2.5×10¹⁵ n_{eq}/cm²等效中子通量
 辐照后,可以达到35皮秒的时间分辨,电荷收集大于10fC
 辐照后可以工作在300V左右,小于单粒子击穿效应的危险电压600V
 国际上日本滨松等LGAD等都要工作在600V以上,击穿风险非常高

各国LGAD辐照后的电荷收集 Vs 电压

各国LGAD辐照后的时间分辨率 Vs 电压

1000

束流测试的探测效率

- 辐照后, LGAD传感器束流测试中有近100% 探测器效率
- 可以承受2.5×10¹⁵ n_{eq}/cm²等效中子通量。

读出电子学方案

- 一个LGAD探测器模块有4个读出通道
- ▶ 每个通道均可独立实现时间的测量,每个通道时间分辨率均可好于100皮秒。
- ➤ 在束流线上前后放置两组LGAD探测器模块
- ▶ 可以精确测得质子经过一定距离的飞行时间,进而计算得到质子的飞行速度和动量。

- 时间分辨率~100ps
- 能量分辨率 1%

读出电子学方案(2)

拟采用PXIe-X1012波形数字化采集卡
▶ 具有1GHz带宽
▶ 6.4GS/s采样率
▶ 12bit垂直分辨率

	<u> </u>	<u> </u>	<u> </u>
	触发频率hz	每次触发采集点数	数据率MB/S
1K	1000	100	0.2
1M	1000000	100	200
10M	1000000	100	2000

通道数	2
垂直分辨率	12 bit
采样率	最高3.2 GS/s(2通道)或6.4 GS/s(1通道)
耦合方式	直流耦合
模拟带宽	DC-1 GHz
输入信号范围	800 mVpp
输入接口	单端LEMO
有效位	8.5 bit(带宽500MHz)、8.0 bit(带宽1000MHz)

所需设备列表

项目	数量/通道	参数
高压电源	16 道	-500V-0V
低压电源	16道	0-24V
快读出板	4块	4ch, TIA 470Ω
LGAD器件	4片	2cm×2cm
波形采集卡	16道	6.4Gs/s 1GHz
采集卡机箱	4台	-
计算机	1台	-
工装支架	4套	-

前期实验结果

在DESY电子束流测试中, 模块级别的时间分辨率达到50皮秒

IHEP module time resolution In DESY 2019 test beam

前期实验结果(2)

前期实验结果(3)

CH1 : B14-1 H1 LGAD 1.3mm*1.3mm 28.5ps@220V CH2 : B14-3 H3 LGAD 1.3mm*1.3mm 35.02ps@220V CH3 : W8-IV-E4-L4-15_100 3mm*3mm 47.5ps@ 160V

在BSRF同步辐射的电子束流测试中, 时间分辨率~50皮秒

CH1_CH2	1B3 test	Beta test
Timing. sigma	43.85ps	45.15ps

CH1_CH3	1B3 test	Beta test			
Timing. sigma	55.92ps	55.39ps			

次级pion束的初步设计

▶通过用飞行时间法测量质子能量,能量测量精度好于1%。 ▶拟使用高能所研发的LGAD硅传感器 ▶使用波形数字化采集卡做电子学读出

参数类型	参数名称	参数值		
	探测器尺寸	2cm*2cm		
	时间分辨率	100ps		
探测器设计参数	电子学通道	12		
	质子能量测量区间	0.8~1.6GeV		
	能量分辨率	1%		

Turns

LGAD传感器的信号上升沿

LGAD传感器的信号上升沿为0.5ns左右

备选方案:探测器模块

▶ 硅时间探测器模块读出系统
 ▶ 探测器模块通过柔性电缆
 ▶ 柔性电缆目前最长约75cm

24

1.

28

27

26 _____

25 g

24

23

LSB

1/2探测器模块:225通道 (到达时间数字读出)

26.7	27.3	26.1	27.4	28.0	25.9	27.2	28.1	27.5	27.4	26.3	27.6	27.6	27.5	26.8
29.0	26.7	27.5	25.9	26.7	26.8	25.8	25.8	26.2	27.1	26.1	26.6	27.1	27.1	26.8
27.7	26.9	26.3	27.6	26.7	27.7	25.7	25.6	27.5	25.7	28.0	26.3	26.5	25.9	27.1
28.2	27.3	26.7	28.1	26.2	25.5	25.1	26.5	25.5	24.8	25.0	26.0	26.1	26.9	25.6
27.6	26.0	25.8	25.1	24.1	26.5	25.5	25.1	24.3	25.3	25.1	23.4	25.6	24.9	28.2
26.0	25.2	26.3	26.5	24.7	24.5	25.5	25.1	24.6	25.5	24.8	25.9	26.0	25.2	27.0
26.4	25.6	24.8	25.5	24.4	23.7	24.3	23.9	22.7	24.6	23.6	24.5	24.2	24.4	26.8
26.9	25.6	22.7	24.3	22.1	23.3	22.2	23.1	22.9	22.7	24.9	25.5	26.2	23.2	25.1
24.4	24.9	24.2	23.1	23.5	23.8	24.3	22.9	23.0	24.0	22.3	24.4	25.5	25.0	24.5
25.7	24.0	24.6	24.0	23.5	23.9	23.3	24.2	24.5	24.4	24.7	22.9	24.4	24.9	25.0
25.3	23.8	26.4	24.1	23.4	23.0	24.7	24.8	23.0	25.3	24.1	24.4	24.5	23.5	24.6
23.6	24.7	23.9	24.0	24.6	24.9	24.2	23.7	24.1	23.9	23.0	24.8	24.1	23.7	23.4
25.9	24.7	24.3	23.4	24.9	24.6	22.9	22.9	22.5	24.5	23.8	22.4	24.7	24.1	23.9
24.2	23.6	25.8	23.6	22.7	24.4	23.4	23.0	23.6	24.3	25.0	23.8	25.0	24.4	24.5
24.4	23.0	24.0	23.9	23.2	24.8	23.5	23.8	24.6	25.6	24.1	23.9	23.6	23.6	24.6

超快读出ASIC芯片

研究目标:抗辐照芯片能承受200MRad的电离辐照

研究方案:基于快速时间-数字转换器(Time-to-Digital Converter, TDC)

主导高速读出芯片的抗辐照赘余校验电路的设计

研究难点:抗辐照芯片与超快芯片都是卡脖子禁运技术

十皮秒级别快速时间-数字转换器芯片技术是国内亟需技术

BMA (Beam Monitor of ATLAS)

- Two LGAD pads (1.7 mm²) installed this year on Feb. 22 in JFC3 side C as Run-4 lumi monitor prototypes.
- Innovative detector readout scheme.

In the original proposal the installation of a standard CERN RP 90 Sr source for routinely calibrations is foreseen (NOT ADDED IN THIS FIRST VERSION). Good thermal contact with the JFC3. NO COOLING NEEDED!

21

More on μ -dependance

- RUN 427914, taken after $L_{int} \sim 0.02$ /fb: both BMA0 and BMA1 had stable gain
- A clear effect is visible, for both BMAs, when normalizing to LCD (µ-dep corrected and NOT corrected)
- As long as the gain was stable, the two BMAs appears to be μ -dep correction free !