

Status of the SND and CMD-3 experiments in Novosibirsk L.Kardapoltsev

Budker Institute of Nuclear Physics

Experimental Physics Division Seminar, IHEP, CAS 19 January 2023

Budker Institute of Nuclear Physics

• Budker Institute of Nuclear Physics is located in the Novosibirsk scientific center

There are two working e+e- colliders in BINP One of them is VEPP-2000

VEPP-2000 e⁺e⁻ collider

Round beams

VEPP-2000 parameters:

- c.m. energy 0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- Luminosity close to 2 GeV
- 1x10³² cm⁻² sec⁻¹ (project)
- 0.8x10³² cm⁻² sec⁻¹ (achieved)
- Two detectors: SND and CMD-3

Beam energy measurement

- Beam energy is controlled using compton backscattering of laser radiation on electron beam
- From the fit parameters, the beam energy and beam energy spread are calculated
- Accuracy of the beam energy measurement
 ~ 0.1 MeV

SND detector

- 1 beam pipe, 2 tracking system,
- 3 aerogel Cherenkov counter,
- 4 NaI(TI) crystals, 5 phototriodes,
- 6 iron muon absorber, 7–9 muon
- detector, 10 focusing solenoids.

CMD-3 detector

DC- drift chamber

ZC – Z–chamber LXE – liquid xenon calorimeter CsI– calorimeter, 1152 crystals TOF – time of flight system Mu - muon system BGO– calorimeter, 680 crystals

Collected data

2010-2013 – experiments, 70 pb⁻¹ 2013-2016 – upgrade, new injector 2017-2021 – experiments, 310 pb⁻¹ 2022 – the most fruitful year, 270 pb⁻¹

Total integrated luminosity IL≈650 pb⁻¹ has been collected by each detector

Muon anomalous magnetic moment

 $\vec{\mu} = g \frac{e\hbar}{2mc} \vec{s}$

Magnetic moment of muon:

- Gyromagnetic factor g for
 - Dirac particles: g = 2
 - Higher order contributions (QFT): g ≠ 2
- Muon anomaly

$$a_{\mu} = \frac{g-2}{2} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HVP} + a_{\mu}^{HLbL}$$

- New result from FNAL confirms tension with SM (4.2σ!)
- Improvement of SM prediction highly desirable
- Uncertainty dominated by HVP and HLbL

Data from: Phys.Rep 887 (2020) 1-166

 $R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\rho^* \to hadrons}$

 $\sigma(e^+e^- \rightarrow u^+u^-)$

Process $e^+e^- \rightarrow \pi^+\pi^-$ at SND

Analisys strategy:

- The collinear e⁺e⁻ → e⁺e⁻, μ⁺μ⁻, π⁺π⁻ events are selected
- Sorted into two classes: e⁺e⁻ and μ⁺μ⁻, π⁺π⁻ using machine learning
- μ⁺μ⁻ events are subtracted using theoretical cross section

Systematic uncertainty on the cross section (%)

Source	< 0.6 GeV	0.6 - 0.9 GeV
Rad. cor.	0.2	0.2
Selection criteria	0.7	0.7
e/π separation	0.3-0.5	0.1
Nucl. interaction	0.2	0.2
μ subtraction	0.3-0.7	0.0-0.2
Total	0.9-1.2	0.8
JHEP 01(2021) 113		

Based on 1/10 of full SND data set

- e/π separation is based on difference in the energy deposition profiles
- Identification efficiencies of e⁺e⁻ and π⁺π⁻ events is better then 99.5%

Process $e^+e^- \rightarrow \pi^+\pi^-$ at SND

- The fit to the model based on VMD is performed
- The ρ meson mass obtained from the fit is in agreement with the results of earlier experiments
- The ρ meson width has tension with the value reported by BABAR
- This discrepancy can be partially explained by difference between the fitting models

L.Kardapoltsev EPD Seminar, IHEP 2023

Process $e^+e^- \rightarrow \pi^+\pi^-$ at SND

- 3% difference between BABAR and SND data in 0.62 ≥ √s ≥0.7 GeV
- Deviation between KLOE and SND data is 1-3% at √s ≥ 0.7 GeV
- Good agreement with previous measuremens from VEPP-2M

- Hadronic contribution to muon (g-2) is in good agreement for this work, BaBar and priveous SND measurement
- There is a discrepancy with KLOE data

Hadronic contribution to muon (g-2)/2 form e+e- $\rightarrow \pi^{+}\pi^{-}$

	a _µ ×10 ¹⁰
SND VEPP-2000	409.79±1.44±3.87
SND VEPP-2M	406.47±1.74±5.28
BaBar	413.58±2.04±2.29
KLOE	403.39±0.72±2.50

Process $e^+e^- \rightarrow \pi^+\pi^-$ at CMD-3

- Full available statistics in c.m. energy range < 1.2 GeV, three data taking scans
- e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ separation by:
 - 2D fitting of momentum (E < 0.9 GeV)
 - or 2D fitting of energy deposition in LXe (E > 0.55 GeV) Most of systematics are uncorrelated!
- Third method for consistency check: by angular distribution

Separation by momentum

PDFs are based on MC

- «Ideal» PDFs are generated using MC
- «Ideal» p.d.f.sare smeared with detector resolution function

Separation by energy deposition

PDFs are mostly empirical

- Construsted using the data
 - Tagged electrons and muons
 - Cosmic muons

Process $e^+e^- \rightarrow \pi^+\pi^-$ at CMD-3

• Consistency check between three methods in vicinity of ρ meson

By momentum: $(N_{\pi\pi}/N_{ee})_{\text{fit/predict}} = 1.0187 \pm 0.0003$ By energy: $\Delta N_{\pi\pi}/N_{ee} = +0.05\% \pm 0.033\%$ By angular distribution: -free asymmetry: $\Delta N_{\pi\pi}/N_{ee} = -0.23\% \pm 0.12\%$ -fixed asymmetry: $\Delta N_{\pi\pi}/N_{ee} = +0.20\% \pm 0.08\%$

Three methods agree to ~0.2%

Comparison between different data sets

Comparison of measured $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ to QED

Despite the quite different experimental condition in all scans, results are in good agreement

Process $e^+e^- \rightarrow \pi^+\pi^-$ at CMD-3

Relative statistical accuracy $\Delta\sigma/\sigma$ of various data sets in 20 MeV energy bins

The analysis is on a very last stages. Stay tuned!

Process $e^+e^- \rightarrow n\overline{n}$

• $e^+e^- \rightarrow n\overline{n}$ events at the SND

- n annihilates in electromagnetic calorimeter with big energy deposition
- n has low energy deposition in calorimeter.
- n has low velocity, its signal in EMC is delayed with respect to typical e⁺e⁻ annihilation event.

Time of the signal in the electromagnetic calorimeter was used for selection of $e^+e^- \rightarrow n\overline{n}$ events

Eur. Phys. J.C 82 (2022) 8, 761

Process $e^+e^- \rightarrow n\overline{n}$

- Detection efficiency and beam background in our previous analysis were underestimated
- New result supersedes previous SND measurement of e+e- → nn cross section
- Near 2 Gev our result is in good agreement with BES III measurement

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} \left[\left| G_M(s) \right|^2 \left(1 + \cos^2 \vartheta \right) + \frac{1}{\tau} \left| G_E(s) \right|^2 \sin^2 \vartheta \right], \beta = \sqrt{1 - 4m_N^2/s}, \tau = \frac{s}{4}m_N^2$$

$$\sigma(s) = \frac{4\pi \alpha^2 \beta}{3s} \left[|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2 \right], \qquad F(s)^2 = \frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}$$

Ratio of proton and neutron form factors is 1.3-1.5

0.2

0

0

0.2

0.4

0.6

p (GeV/c)

|G_E / G_M| ratio can be extracted from the measured cos θ distribution

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \theta}{4s} \left[\left| G_M(s) \right|^2 \left(1 + \cos^2 \vartheta \right) + \frac{1}{\tau} \left| G_E(s) \right|^2 \sin^2 \vartheta \right]$$

SND results agree with the assumption that $|G_E / G_M| = 1$

But do not contradict larger values |G_E / G_M |≈1.4-1.5, observed at BABAR and BESIII

Eur. Phys. J.C 82 (2022) 8, 761

Process $e^+e^- \rightarrow n\overline{n}$

Sinusoidal modulation was observed in nucleon effective form factors in BABAR and BESIII experiments. SND and BESIII data fit with significantly lower oscillation frequency.

Eur. Phys. J.C 82 (2022) 8, 761

pp threshod scan

Fit to exponentially saturated function gives $\sigma_{th} = 0.78 \pm 0.28$ MeV

Beam energy spraed 0.95±0.1 MeV

Phys. Lett. B 723 (2013) 73 Phys. Lett. B 794 (2019) 64–68 Anti-protons close to the production threshold are seen as an annihilation star at the vacuum beam pipe (or in the DC inner wall)+ large energy deposition in the calorimeters.

Above 1.9 GeV they are seen as collinear pp-bar tracks in DC

Fast increase near the threshold

pp threshod scan

- There is a sharp drop in cross sections e+e- → 3(π⁺π⁻), K⁺K⁻π⁺π⁻ near pp-bar threshold
 Nothing like that for
- Nothing like that for $e^+e^- \rightarrow 2(\pi^+\pi^-)$
- Simultanious fit of all three channels by exponentialy rising (drop) functions gives: Eth = 1876.87±0.10±0.11 MeV

 $\sigma_{th} = 0.31 \pm 0.25 \pm 0.15$ MeV $\chi^2/ndf = 66/60$

σ_{th} consistant with zero

- The idea, that signal in the hadronic cross section is proportional to the annihilation rate of pp to this final state does not work!
- Observation the «dip» in K⁺K⁻π⁺π⁻ indicates on complicated production dynamics

J/ψ radiative decay

- Something very similar happends with J/ψ radiative decays
- It is usually explained by X(1835) resonance with J^{PC} = 0⁻⁺
- If effects in $e^+e^- \rightarrow X$ and $J/\psi \rightarrow \gamma X$ connected, there should be more complicated explanation

pp threshod scan

First preliminary results from CMD-3 confirms a fast cross section changing

Process $e^+e^- \rightarrow \pi^0\pi^0\gamma$

Process $e^+e^- \rightarrow \eta \pi^0 \gamma$

L.Kardapoltsev EPD Seminar, IHEP 2023

Process $e^+e^- \rightarrow \eta\eta\gamma$

Thank you for your attention!