

Multiple Heavy Quarks

- Multiple Heavy Quarks in high-energy hadron collisions Single Parton Scattering vs Double Parton Scattering
- cccc
 - DPS: J/ψJ/ψ, J/ψD, DD,,
 - SPS: Ξ_{cc}^{++} , X(6900), T_{cc}^{+}
- ccbb
 - DPS: YD, YJ/ψ,
 - SPS: B_c^+
- bbbb
 - DPS: Y Y
- (Triple Parton Scattering ccccc)
 - J/ψJ/ψJ/ψ

High energy hadron gluon collisions

- Heavy flavour production at LHC is dominated by gg-fusion process
- Quarkonia: reasonably (rapidly improving) agreement with NR QCD
 - J/ψ , ψ ', η_c , $\chi_{c1,2}$, $\chi_{b1,2}$ (nP),
- Open flavour: FONLL does good job

Heavy flavour production cross-section in forward region is large

$$\sigma(c\overline{c})_{p_{\rm T}<8\,{\rm GeV}/c,\,2.0< y<4.5} = 1419\pm12\,{\rm (stat)}\pm116\,{\rm (syst)}\pm65\,{\rm (frag)}\,\mu{\rm b},$$

VS

$$\sigma_{\rm inel}^{\rm acc}(p_{\rm T}>0.2~{\rm GeV}/c,~2.0<\eta<4.5)=55.0\,\pm\,2.4~{\rm mb}$$
 ,

Nucl.Phys. B871 (2013) 1

JHEP 1502 (2015) 129

$Q_1\overline{Q}_1Q_2\overline{Q}_2$ production: 3 possible ways

Single Parton Scattering

$$gg \rightarrow (Q_1\overline{Q}_1)(Q_2\overline{Q}_2)$$

- State-of-art theory calculations
- Many theory approaches
- Typically large theory uncertainty

Double Parton Scattering

$$gg \rightarrow (Q_1Q_1) gg \rightarrow (Q_2Q_2)$$

- Two idependent gg fusion processes
- Very large parton flux
- Simple approach
- Large predictive power
- (Intrinsic charm: if there is some intrinsic charm in proton, one needs to produce only one $Q_1\overline{Q}_1$ cc is already here...)

SPS e.g. for J/\psi J/\psi

- Typically large set of diagrams
 - Many approaches, CS/CO, large uncertainties, ...
- 36 diagrams of two types

- Intrinsically it can't be small!
- Selection rules:

(go off at (N)NLO)

- $^{\circ}$ "Small" $\sim 10^{-2...-3}$ color-octet contribution to wave function of quarkonium
- * However could be dominating:
 - For high p^T-region due to gluon fragmentation graph
 - For final states, suppressed for CS scenario

DPS: simple paradigm

Two <u>independent</u> scattering processes Relations through (unknown) ₂PDFs

$$\Gamma_{ij}(x_1,x_2;\mathbf{b_1},\mathbf{b_2};Q_1^2,Q_2^2) \ = \ D_h^{ij}(x_1,x_2;Q_1^2,Q_2^2)f(\mathbf{b_1})f(\mathbf{b_2}),$$

Assume factorization of 2PDFs

$$D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2).$$

(Can't be true for all x,Q^2)

Easy to make predictions!

And the predictions are easy to test

$$\sigma_{\rm DPS}^{AB} = \frac{m}{2} \frac{\sigma_{\rm SPS}^A \sigma_{\rm SPS}^B}{\sigma_{\rm eff}}.$$

Universal (energy and process independent) factor

$$1/\sigma_{eff} = \int d^2b F^2(b)$$

$$\sigma_{\text{eff}}^{\text{DPS}} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$$

CDF, F.Abe et al., PDR 56 3811 (1997)

$Q_1\overline{Q}_1Q_2\overline{Q}_2$ production

- Large theory uncertainty
 - Low predictive power
- Correlated final state
- Moderate dependency on √s
- Kinematics:
 - Can have large p_T
 - Smaller masses
 - Angular/rapidity correlations

Possible to produce and study particles with Q_1Q_2 or $Q_1\overline{Q}_2$

- Single parameter:
 - data-driven predictions
- No correlations
- Large (~quadratic) dependency on √s
- Kinematics:
 - Smaller p_T
 - Larger masses
 - No correlations
- (Can be largely violated in certain kinematic regions)

No particles with Q_1Q_2 or $Q_1\overline{Q}_2$

LHCb: beauty detector

VELO

Tracking system

Hadron ID

Calorimeter system

Muon system

$J/\psi J/\psi$ at $(\pi,p)Pt$ collisions

NA3, 1982

 $\sigma^{J/\psi J/\psi}/\sigma^{J/\psi} = (3\pm 1)\times 10^{-4}$

- J. Badier et al., "Evidence for $\psi\psi$ production in π " interactions at 150 and 280 GeV/c", Phys. Lett. **B** 114, 457 (1982).
- J.Badier et al., "www production and limits on beauty meson production from 400 GeV/c protons", Phys Lett B 158, 85 (1985)

$J/\psi J/\psi$ at $\sqrt{s}=7TeV$ pp-collisions LHCb

First observation

• 141 ± 19 events, $>6\sigma$

$$\sigma^{J/\psi J/\psi} = 5.1 \pm 1.0 \pm 1.1 \text{ nb},$$

- SPS: 4.2nb (±30%)
- DPS: 7nb (±30%)
- Compatible with SPS, DPS
 - · ... and their sum

$$\sigma^{J/\psi J/\psi}/\sigma^{J/\psi} = (5.1 \pm 1.0 \pm 0.6^{+1.2}_{-1.0}) \times 10^{-4},$$

PLB 707 (2012) 52

$J/\psi J/\psi$ at $\sqrt{s}=13 \text{ TeV}$ pp-collisions LHCb

JHEP 06 (2017) 047

• Signal of $(1.05\pm0.05)\times10^3$ events

$$\sigma(J/\psi\,J/\psi\,) = 15.2 \pm 1.0\,(\mathrm{stat}) \pm 0.9\,(\mathrm{syst})\,\mathrm{nb},$$

•DPS:
$$8.1$$
nb ($\pm 25\%$)

$$\frac{\sigma(J/\psi J/\psi)}{\sigma(J/\psi)} = (10.2 \pm 0.7 \,(\text{stat}) \pm 0.9 \,(\text{syst})) \times 10^{-4},$$

Neither SPS nor DPS can be excluded

$J/\psi J/\psi$ at $\sqrt{s}=13 TeV$ pp-collisions LHCb

JHEP 06 (2017) 047

$J/\psi J/\psi$ at $\sqrt{s}=13 \text{ TeV}$ pp-collisions LHCb

JHEP 06 (2017) 047

Neither SPS nor DPS can be excluded

Other cccc processes: J/\pDc

Cross-sections: $J/\psi D\overline{c}$

JHEP 06 (2012) 141

3.6.3	LH		[]]			
Mode		LHCb measurement		σ [nb]		
$J/\psi D^0$				161.0 ± 3	3.7 ± 12.2	
$J/\psi D^+$				56.6 ± 1	1.7 ± 5.9	
$J/\psi D_s^+$			$30.5 \pm 2.6 \pm 3.4$			
$J/\psi \Lambda_c^+$			$43.2 \pm 7.0 \pm 12.0$			
Theory predictions: SPS << DPS						
Mode		$\sigma^{ m gg}$		$\sigma^{ ext{DPS}}$	$\sigma^{ m sea}$	
			nb]			
$J/\psi D^0$	10 ± 6	7.4 ± 3.7		146 ± 39	220	
$J/\psi D^+$	5 ± 3	2.6 ± 1.3		60 ± 17	100	
$J/\psi D_s^+$	1.0 ± 0.8	1.5 ± 0.7		24 ± 7	30	
$J/\psi \Lambda_c^+$	0.8 ± 0.5	0.9 ± 0.5		56 ± 22		

$J/\psi D\overline{c}$

JHEP 06 (2012) 141

Largely uncorrelated: DPS dominance?

$cc\overline{cc}$ in π^-A by WA75

- **1987**
- 350 GeV/ $c \pi^-$
- 2 events

Other cccc processes: DDcc

Cross-sections: DDcc

JHEP 06 (2012) 141

DEN TIME	LHCb measurement ——	GILLI 00 (2012) 111		A STATE OF	
Mode	σ [nb]	$\sigma_{\mathrm{CC}}/\sigma_{\mathrm{C\overline{C}}}$ [%]	Theory predictions		
$\mathrm{D}_0\mathrm{D}_0$	$690 \pm 40 \pm 70$	10.9 ± 0.8	$\sigma^{ ext{DPS}}$	δ [μb]	
${ m D}^0\overline{ m D}^0$	$6230 \pm 120 \pm 630$	10.9 ± 0.8	$\mathrm{D}^0\mathrm{D}^0$	1.0 ± 0.25	
$\mathrm{D}^0\mathrm{D}^+$	$520 \pm 80 \pm 70$	12.8 ± 2.1	D^0D^+	0.85 ± 0.2	
$\mathrm{D}^0\mathrm{D}^-$	$3990 \pm 90 \pm 500$	12.0 ± 2.1	$\mathrm{D^0D_s^+}$	0.33 ± 0.07	
$\mathrm{D^0D_s^+}$	$270 \pm 50 \pm 40$	15.7 ± 3.4	${ m D}^0\Lambda_{ m c}^+$	0.75 ± 0.25	
${ m D^0D_s^-}$	$1680 \pm 110 \pm 240$	15.7 ± 5.4	D_+D_+	0.17 ± 0.05	
${ m D^0ar{\Lambda}_c^-}$	$2010 \pm 280 \pm 600$	_	$\mathrm{D^{+}D_{s}^{+}}$	0.14 ± 0.03	
D^+D^+	$80 \pm 10 \pm 10$	9.6 ± 1.6	$\mathrm{D}^+\Lambda_\mathrm{c}^+$	0.32 ± 0.12	
D_+D	$780 \pm 40 \pm 130$	9.0 ⊥ 1.0			
$\mathrm{D^{+}D_{s}^{+}}$	$70 \pm 15 \pm 10$	12.1 ± 3.3			
$\mathrm{D^{+}D_{s}^{-}}$	$550 \pm 60 \pm 90$	12.1 ± 0.0	data ~ DPS		
$D^+\Lambda_c^+$	$60 \pm 30 \pm 20$	10.7 ± 5.9			
${ m D}^+ ar{\Lambda}_{ m c}^-$	$530\pm130\pm170$	10.7 ± 0.9			
	AMPS. ALL STREET,	Auto-	John 196/0	A SE	

DDcc

Largely uncorrelated: DPS dominance?

bcbc process: YDc

$$\begin{array}{lll} \mathscr{B}_{\mu^{+}\mu^{-}} \times \sigma^{\Upsilon(1S)D^{0}}_{\sqrt{s}=7\,\mathrm{TeV}} &=& 155\pm21\,(\mathrm{stat})\pm~7\,(\mathrm{syst})\,\mathrm{pb}\,, \\ \mathscr{B}_{\mu^{+}\mu^{-}} \times \sigma^{\Upsilon(1S)D^{+}}_{\sqrt{s}=7\,\mathrm{TeV}} &=& 82\pm19\,(\mathrm{stat})\pm~5\,(\mathrm{syst})\,\mathrm{pb}\,, \\ \mathscr{B}_{\mu^{+}\mu^{-}} \times \sigma^{\Upsilon(1S)D^{0}}_{\sqrt{s}=8\,\mathrm{TeV}} &=& 250\pm28\,(\mathrm{stat})\pm11\,(\mathrm{syst})\,\mathrm{pb}\,, \\ \mathscr{B}_{\mu^{+}\mu^{-}} \times \sigma^{\Upsilon(1S)D^{+}}_{\sqrt{s}=8\,\mathrm{TeV}} &=& 80\pm16\,(\mathrm{stat})\pm~5\,(\mathrm{syst})\,\mathrm{pb}\,, \end{array}$$

$\left\ \frac{\sigma^{\Upsilon(1\mathrm{S})\mathrm{c}\overline{\mathrm{c}}}}{\sigma^{\Upsilon(1\mathrm{S})}} \right\ _{\sqrt{s}=7\mathrm{TeV}}$	=	$(7.7 \pm 1.0) \%$,
$\left. \frac{\sigma^{\Upsilon(1\mathrm{S})\mathrm{c}\overline{\mathrm{c}}}}{\sigma^{\Upsilon(1\mathrm{S})}} \right _{\sqrt{s}=8\mathrm{TeV}}$	=	$(8.0 \pm 0.9) \%$,

$$\mathcal{B}_{2/1} \times \frac{\sigma_{\sqrt{s}=7 \text{ TeV}}^{\Upsilon(2\text{S})\text{D}^{+}}}{\sigma_{\sqrt{s}=7 \text{ TeV}}^{\Upsilon(1\text{S})\text{D}^{+}}} = (22 \pm 7)\%,$$

$$\mathcal{B}_{2/1} \times \frac{\sigma_{\sqrt{s}=8 \text{ TeV}}^{\Upsilon(2\text{S})\text{D}^{+}}}{\sigma_{\sqrt{s}=8 \text{ TeV}}^{\Upsilon(1\text{S})\text{D}^{+}}} = (22 \pm 6)\%,$$

Predictions:

SPS: (0.1-0.6)% DPS O(10%)

Expected:

DPS: 25%

data agree with DPS

YDc

ALL differential distributions in excellent agreement with DPS

J/ψ+Y D0 @ 1.96TeV

2.5 ∆φ(J/ψ-Y), rad. Very interesting final state: no SPS LO CS diagrams!

$$\sigma(J/\psi + \Upsilon) = 27 \pm 9 \pm 7 \text{ nb}$$

Uniform Δφ suggestDPS dominance

$$\sigma_{\rm eff} = 2.2 \pm 0.7 \pm 0.9 \, {\rm mb}$$

$Q_1\overline{Q}_1Q_2\overline{Q}_2$ production

- J/ψJ/ψ: neither SPS nor DPS can be excluded
 - cross-sections
 - correlations
- $J/\psi D\overline{c}$: DPS
- DDcc: (likely) DPS dominance
- \bullet YD \overline{c} : DPS
- ($J/\psi\Upsilon$ by D0: DPS)
- One can conclude that SPS is not so important...
 - Is there an evidence for SPS processes?

B⁺ pure SPS ccbb

- Very special case:
 - © Large signals, properties are well measured:
 - · Mass, lifetime,
 - Ratios of Brs
 - \odot differential rates in excellent O(1-5%) agreement with α_s^4 calculations
 - Overall rate is largely "unknown": no measured Br

Puzzle:

where are double heavy baryons $\Xi_{\rm cc}$ & $\Xi_{\rm bc}$?

- also pure SPS
- essentially the same matrix element

cccc pure SPS process

$$N=313 \pm 33$$
 >12 σ

Long-waited

Need more data to study the production

Numerous theory predictions (wide range)

 ullet Measured mass allows predict the $T_{cc}^{}$ mass!

• 200-700 fs

PRL 121 (2018) 5, 052002

256⁺²⁴₋₂₂ 24 fs

Fully charmed tetraquark cccc

There exist sizeable SPS contribution!

T_{cc}^{+} : $cc\overline{cc}$ pure SPS process $D^{0}D^{0}\pi^{+}$

Peak is stable

- Data taking periods
- Data taking conditions
- Dipole magnet polarity
- Charge

Reflections

Fake D⁰

Duplicates

Breit-Wigner fit

Parameter	Value
$N \ \delta m_{ m BW} \ \Gamma_{ m BW}$	117 ± 16 $-273 \pm 61 \text{ keV}/c^2$ $410 \pm 165 \text{ keV}$

- Significance 22 σ
- m_{BW} below $D^{*+}D^{0}$ threshold 4.3σ

T_{cc}^{+} double charm tetraquark $cc\overline{u}\overline{d}$

- Active theory discussions
- * Consensus:
 - isoscalar, $J^P=1^+$, not too far from the DD^* threshold
- Close relation with Ξ_{cc}^{++} baryon
- Very interesting perspective for bbud
 - It can be stable!

Amplitude pole

Analytic continuation of the amplitude to the second Riemann sheet

$$\sqrt{\hat{s}} \equiv m_{\text{pole}} - \frac{i}{2} \Gamma_{\text{pole}}$$

$$\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2$$

$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$$

Low energy scattering parameters

LHCb: Nature Commun. 13 (2022) 1 3351

$$\mathcal{A}_{NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + \mathcal{O}(k^4)$$

Scattering length

$$a = \left[-(7.16 \pm 0.51) + i(1.85 \pm 0.28) \right]$$
fm

- *Real part is negative
 - \bullet \rightarrow attraction

• Effective range

$$r = -\frac{1}{w} \frac{16}{\left|g\right|^2}$$

 $0 \le -r < 11.9 (16.9) \,\text{fm at } 90 (95)\% \,\text{CL}$

Non-positive ← "feature" of our model

• Compositness

$$Z \propto |g|^{-2}$$

$$Z = 1 - \sqrt{\frac{1}{1 + 2|r/\Re a|}}$$

$$Z < 0.52 (0.58)$$
 at $90 (95)\%$ CL

Weinberg 1965, Matuschek Baru Guo&Hanhart 202

Event activity/Track multiplicity

arXiv:2109:01056

- Track multiplicity
- low-mass \overline{DD} and \overline{DD}

p-value: T_{cc}^+ vs $D\overline{D} = 0.1\%$

p-value: T_{cc}^+ vs DD = 12%

- Similar to DD
 - DPS process
 - ... unexpected
- Different from $D\overline{D}$
 - *Expected <u>but</u> totally different!

p_T spectrum

arXiv:2109:01056

p-value: T_{cc}^+ vs DD = 1.4%

p-value: T_{cc}^{+} vs DD = 0.02%

- A bit inconclusive
- More data is needed

2×Y CMS @ 8TeV

$ccc\overline{ccc}$: $J/\psi J/\psi J/\psi$ by CMS

Nature Phys. (2013)

$5.0^{+2.6}_{-1.9}$ signal events, significance 6.7σ

$ccc\overline{ccc}$: $J/\psi J/\psi J/\psi$ by CMS

Nature Phys. (2013)

• Interpretation is not simple

$$\sigma_{\mathsf{TPS}}^{\mathsf{pp} \to \psi_1 \psi_2 \psi_3 + X} = \left(\frac{\mathfrak{m}}{3!}\right) \frac{\sigma_{\mathsf{SPS}}^{\mathsf{pp} \to \psi_1 + X} \sigma_{\mathsf{SPS}}^{\mathsf{pp} \to \psi_2 + X} \sigma_{\mathsf{SPS}}^{\mathsf{pp} \to \psi_3 + X}}{\sigma_{\mathsf{eff},\mathsf{TPS}}^2},$$

$Q_1\overline{Q}_1Q_2\overline{Q}_2$ conclusions

Adv.Ser.Direct.High Energy Phys. 29 (2018) 14

- Multiple production of heavy quarks in high energy hadron collisions is studied in many final states
- Some final states unambiguously DPS dominated
- Bright examples of pure SPS: B_c^+ , Ξ_{cc}^{++} , T_{cc}^+ , X(6900) show that for certain final states& kinematic regions SPS can play important role

$Q_1\overline{Q}_1Q_2\overline{Q}_2$ conclusions

- Multiple production of heavy quarks in high energy hadron collisions is studied in many final states
- * Allows test of various QCD approaches:
 - ullet color octet/color singlet, k_T -factorization ...
- Important for understanding of proton structure
 - DPS, universality of σ_{eff} , violation of factorization, parton correlations
 - TPS expected many results at LHC Run3
- Multiple production of heavy quarks in pA and AA interactions, where can be even more interesting!

