Photon Recognition Algorithm

Zhang Yang 2023, Jan, 4th

Long Crystal Bar ECAL

Crystal bar

- BGO: $X_0 = 1.12 \text{ cm}$, $R_M = 2.23 \text{ cm}$, $\lambda_I = 22.7 \text{ cm}$
- Size in simulation: $1 \times 1 \times 40 \sim 60 \text{ cm}^3$
- > Tower
 - $\sim 40 \times 60 \times 24X_0 \text{ cm}^3$
- Detector:
 - R = 1.86 m, L = 6.6 m, H = 28 cm
 - 8 same trapezoidal staves
 - Avoid gaps point to IP

Recognition of Energy "Core"

- - Reduce the negative effects due to wider longitudinal and lateral developments of clusters.

0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.02 0.01

200

In each layer: local maxima

Principle of Hough Transformation

- A feature extraction method for detecting simple shapes (e.g. lines) in an image.
- > For straight lines:

 $\rho = x \cos \alpha + y \sin \alpha$

- Each point (x, y) in image space is transformed to a curve in Hough space.
- If several points (x_i, y_i) are collinear, their curves intersect at a point (α_0, ρ_0) in Hough space.
- α_0 and ρ_0 are parameters of the straight line that pass through these points (x_i, y_i)

Hough Transformation in ECAL

- ➢ Crystal in image space → band in Hough space.
- Cluster recognition in horizontal and vertical projection spaces respectively.
- Each peak (overlap region of band) in Hough space is chosen as a cluster candidate.

Hough Space

0

0.5

Peak

Performance check

Single photon recognition efficiency in a local coordinate (one tower)
 Photon energy: E = 1, 2, 5, 10, 20, 50 GeV

- > Low energy or small $|\cos \theta|$: One & only one cluster
- > High energy and large $|\cos \theta|$: >1 clusters
 - Fluctuations of energy deposits increase fake cluster

Generalization of the algorithm

Motivation

 Identify photons in jets → A global recognition algorithm is required

Challenge

■ Much larger Hough space → Much larger memory & more computation required

Solution

Limitation on Hough space

Optimization of High Energy Photon Recognition

1.0

Motivation

- Fluctuations may be recognized as fake clusters
- These fake clusters should be removed

0 0.0

0.2

0.4

Esmaller/Elarger

0.6

0.8

Solution

Cut on distances and energy ratio

U

Performance check

Single photon events

- *E* = 1, 2, 5, 10, 20, 50 GeV
- $\theta = 90^{\circ}, 50^{\circ}, 37^{\circ}$
- $\bullet \phi = 0^{\circ} \sim 360^{\circ}$

Performance

- Photon recognition efficiency ~100%
- Fake cluster fraction significantly ^{1.0}
 reduced

Recognition efficiency

Recognition efficiency without fake cluster

Performance check

> Performance

- Recognition efficiency >95% for photons with *E* > 0.7 GeV
- Photons with lower energy will be recognized using other method

Backup

performance for γ

Distance & E_{small}/E_{max}

▶ 目的:区分两个相近的 Hough cluster 是否有涨落导致的假光子

通过对比这些 Hough clusters 之间的距离以及能量之比,去除假光子本底,保留双光子 事例

 $\rho_1 = x \cos \alpha_1 + y \sin \alpha_1$ $\rho_2 = x \cos \alpha_2 + y \sin \alpha_2$ $\rho_3 = x \cos \alpha_3 + y \sin \alpha_3$ 两两做对比,以 *cluster*₁, *cluster*₂ 为例。设 *E*₁ > *E*₂ 则 *cluster*₁ 中能量最大的 local max 坐标为 (*x*_m, *y*_m)

两个cluster的**距离**: 过 (x_m , y_m) 垂直于 cluster1 的直线与两个cluster的 交点的距离

垂线的方程: $\begin{cases} x = x_m + t \cos \alpha_1 \\ y = y_m + t \sin \alpha_1' \end{cases}$ (x_m, y_m) 到两个cluster的距离: $t_1 = \rho_1 - x_m \cos \alpha_1 - y_m \sin \alpha_1$ $t_2 = \frac{\rho_2 - x_m \cos \alpha_2 - y_m \sin \alpha_2}{\cos \alpha_1 \cos \alpha_2 + \cos \alpha_1 \cos \alpha_2}$ 距离= $|t_1 - t_2|$

Distance & E_{small}/E_{max}

Workflow

