

# **Status Report**

(2022.9 - 2022.12)

Xiaonan Hou Supervisor: Hongbo Liao

2023/1/5

# Outline



#### 1 Analysis of ttZ'

- Signal validation
- Top reconstruction

#### 2 Analysis of 4top

- Cross check
- Check and download missing samples

#### 3 Hardware work

- HGCal
- Others

#### 4 Plans for next steps

# Analysis of ttZ'



#### 1. Signal validation

σ [fb] 10

10<sup>2</sup>

10

10-2

10 10

10 10 give a talk on <u>B2G Resonances</u>(14 October 2022)

θ=1/2π

3500 Mass [GeV]



Z' coupling to higher-generation

fermions

signal sample validation

2 Universidad de los Andes

3. Institute of High Energy Physic

Iniversidad de los Andes

Ion, Francesco Romeo<sup>1</sup>, Andres Florez<sup>2</sup>, Hongbo Liac

Use the **Top-philic-Zprime\_V1** UFO from authors of paper UFO model

Private signal production using <u>Sihyun's event production framework</u> originally d eveloped under EXO

This plot shows the xSec before decaying the top The xSec values are the same in the UFO model considered

We have shown  $\theta = 0$ , ct = 1, mass = 1/3TeV for the ttZ' process in the talk Plots are shown using generator level information

Z' pt, eta phi and mass Top, W, b, j, lep multiplicity Top kinematic distributions DeltaEta,Phi,R Top distributions DeltaEta,Phi,R Top decay distributions All jet pT, eta, phi distributions

Detailed slides

Results are as expected!

VANDERBILT



2023/1/5

4

# Analysis of ttZ'



Move to reco level:

b-tagger: btagDeepFlavB selections: muon = 1, electron = 0, tau = 0fatjets = 0 (W jets = 0, Top jets = 0) >= 7 jets $>= 1T \ 1M \ 1L \ (>= 3 \ b \ jets)$ 

gen-matching before top reconstruction





Finally, can reconstruct at least 3 tops (2 hadronic + 1 leptonic)

# 02

# Analysis of 4top

1. Help to do a cross check with Huiling

independent code: just followed the AN of Huiling's the same object selections, luminosity and cross section event weight = genWeight \* prefiringWeight no JER and no TES

#### fix the bugs: Float\_t -> Double\_t conversion (very important influence!)

#### Last time we have small difference, now we reach the same result

cuts: HLT -> baseline1 (jets number >=6) -> baseline2 (6th jet pt > 40GeV) -> baseline3 (Jets HT > 500GeV) -> SR

| process   | initial     | HLT        | baseline1   | baseline2   | baseline3   | 1tau0l_muon | 1tau0l_lep  | 1tau0l_tau | 1tau0l_jet | 1tau0l_bjet |
|-----------|-------------|------------|-------------|-------------|-------------|-------------|-------------|------------|------------|-------------|
| tttt      | 4544000.0   | 4232869.0  | 161.09      | 126.12      | 121.55      | 88.79       | 68.01       | 5.22       | 3.96       | 3.6         |
| tt        | 295335000.0 | 32492447.0 | 1242279.01  | 633200.9    | 506452.12   | 477097.56   | 453378.95   | 7956.74    | 2751.5     | 1756.88     |
| qcd       | 106411630.0 | 10145831.0 | 36744077.09 | 14950851.12 | 11941997.12 | 11935304.22 | 11924172.49 | 23497.41   | 5695.33    | 689.54      |
| ttX       | 40314514.0  | 16959947.0 | 22326.63    | 12054.15    | 10565.29    | 9629.81     | 8894.53     | 226.73     | 87.05      | 61.11       |
| VV        | 24556000.0  | 79220.0    | 194.01      | 94.12       | 83.24       | 81.54       | 80.03       | 0.72       | 0.15       | 0.03        |
| singleTop | 9012000.0   | 632353.0   | 41962.64    | 21162.79    | 17893.85    | 17089.63    | 16433.42    | 244.55     | 68.07      | 38.72       |
| totalbg   | 475629144.0 | 60309798.0 | 38050839.38 | 15617363.08 | 12476991.62 | 12439202.75 | 12402959.42 | 31926.15   | 8602.09    | 2546.28     |
| totalMC   | 480173144.0 | 64542667.0 | 38051000.47 | 15617489.2  | 12477113.17 | 12439291.55 | 12403027.44 | 31931.38   | 8606.05    | 2549.88     |

#### Huiling's result

#### 2016postVFP 1tau0l

|                           |                                                                                 |                                                        |                                                                                   |                                           |                                                                    |                                           |                                           |                                           |                                                                           | -                                       |                                                                                          |
|---------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|
| Selection                 | $\operatorname{Ini}\operatorname{evt}$                                          | Metfilter                                              | Trigger                                                                           | baseline1                                 | baseline2                                                          | baseline3                                 | 0 T muon                                  | 0 T ele                                   | 1 TTau                                                                    | $\operatorname{Jet}_{\mathcal{S}} >= 8$ | M BJets $>= 2$                                                                           |
| tttt                      | 191.84                                                                          | 191.47                                                 | 176.32                                                                            | 161.09                                    | 126.12                                                             | 121.55                                    | 88.79                                     | 68.01                                     | 5.22                                                                      | 3.96                                    | 3.60                                                                                     |
| $\mathbf{qcd}$            | 4640125424798.96                                                                | 4639130661667.41                                       | 75217620.42                                                                       | 36744077.09                               | 14950851.12                                                        | 11941997.12                               | 11935304.22                               | 11924172.49                               | 23497.41                                                                  | 5695.33                                 | 689.54                                                                                   |
| tt                        | 13617979.85                                                                     | 13606464.23                                            | 1618169.03                                                                        | 1242279.00                                | 633200.89                                                          | 506452.18                                 | 477097.61                                 | 453379.00                                 | 7956.74                                                                   | 2751.50                                 | 1756.88                                                                                  |
| ttX                       | 105490.81                                                                       | 105266.78                                              | 31546.31                                                                          | 22326.63                                  | 12054.15                                                           | 10565.29                                  | 9629.81                                   | 8894.53                                   | 226.73                                                                    | 87.05                                   | 61.11                                                                                    |
| single top                | 1182805.11                                                                      | 1181777.74                                             | 60858.45                                                                          | 41962.64                                  | 21162.79                                                           | 17893.85                                  | 17089.63                                  | 16433.42                                  | 244.55                                                                    | 68.07                                   | 38.72                                                                                    |
| VV                        | 161554.01                                                                       | 161449.74                                              | 510.24                                                                            | 194.01                                    | 94.12                                                              | 83.24                                     | 81.54                                     | 80.03                                     | 0.72                                                                      | 0.15                                    | 0.03                                                                                     |
| totalbkg                  | 4640140492628.74                                                                | 4639145716625.90                                       | 76928704.45                                                                       | 38050839.37                               | 15617363.07                                                        | 12476991.67                               | 12439202.81                               | 12402959.48                               | 31926.15                                                                  | 8602.09                                 | 2546.28                                                                                  |
| $\operatorname{totalMC}$  | 4640140492820.59                                                                | 4639145716817.36                                       | 76928880.77                                                                       | 38051000.46                               | 15617489.19                                                        | 12477113.22                               | 12439291.60                               | 12403027.49                               | 31931.38                                                                  | 8606.05                                 | 2549.88                                                                                  |
| VV<br>totalbkg<br>totalMC | $\frac{161554.01}{4640140492628.74}$ $\frac{4640140492820.59}{640140492820.59}$ | $\frac{161449.74}{4639145716625.90}\\4639145716817.36$ | $\begin{array}{r} 510.24 \\ \hline 76928704.45 \\ \hline 76928880.77 \end{array}$ | $\frac{194.01}{38050839.37}\\38051000.46$ | $\begin{array}{r} 94.12 \\ 15617363.07 \\ 15617489.19 \end{array}$ | $\frac{83.24}{12476991.67}$ $12477113.22$ | $\frac{81.54}{12439202.81}$ $12439291.60$ | $\frac{80.03}{12402959.48}$ $12403027.49$ | $\begin{array}{r} 0.72 \\ \hline 31926.15 \\ \hline 31931.38 \end{array}$ | $\frac{0.15}{8602.09}$ 8606.05          | $     \begin{array}{r}       0.03 \\       2546.28 \\       2549.88 \\     \end{array} $ |



## 02

## Analysis of 4top

#### Event yield in each subchannel 2016postVFP:

| process   | 1tau0l    | 1tau1l   | 1tau2l  | 2tau0l  | 2tau1   |
|-----------|-----------|----------|---------|---------|---------|
| tttt      | 93880.00  | 49349.00 | 7178.00 | 3176.00 | 942.00  |
| tt        | 38326.00  | 4585.00  | 57.00   | 348.00  | 10.00   |
| qcd       | 138.00    | 0.00     | 0.00    | 2.00    | 0.00    |
| ttX       | 59972.00  | 13575.00 | 1374.00 | 2444.00 | 379.00  |
| VV        | 5.00      | 0.00     | 0.00    | 0.00    | 0.00    |
| singleTop | 760.00    | 344.00   | 52.00   | 140.00  | 7.00    |
| totalbg   | 99201.00  | 18504.00 | 1483.00 | 2934.00 | 396.00  |
| totalMC   | 193081.00 | 67853.00 | 8661.00 | 6110.00 | 1338.00 |

#### Huiling's result

| process   | 1tau0l  | 1tau1l | 1tau2l | 2tau0l | 2tau1l |
|-----------|---------|--------|--------|--------|--------|
| tttt      | 3.60    | 1.83   | 0.25   | 0.13   | 0.04   |
| tt        | 1756.88 | 166.32 | 2.01   | 14.11  | 0.36   |
| qcd       | 689.54  | 0.00   | 0.00   | 8.08   | 0.00   |
| ttX       | 61.11   | 11.46  | 0.96   | 1.78   | 0.25   |
| VV        | 0.03    | 0.00   | 0.00   | 0.00   | 0.00   |
| singleTop | 38.72   | 4.97   | 0.24   | 0.26   | 0.01   |
| totalbg   | 2546.28 | 182.76 | 3.22   | 24.23  | 0.61   |
| totalMC   | 2549.88 | 184.59 | 3.46   | 24.35  | 0.65   |



#### Xiaonan's result

| process    | 1tau0l  | 1tau1l | 1tau2l | 2tau0l | 2tau1l |
|------------|---------|--------|--------|--------|--------|
| tttt       | 3.60    | 1.83   | 0.25   | 0.13   | 0.04   |
| tt         | 1756.88 | 166.32 | 2.01   | 14.11  | 0.36   |
| qcd        | 689.54  | 0.00   | 0.00   | 8.08   | 0.00   |
| ttX        | 61.11   | 11.46  | 0.96   | 1.78   | 0.25   |
| VV         | 0.03    | 0.00   | 0.00   | 0.00   | 0.00   |
| single top | 38.72   | 4.97   | 0.24   | 0.26   | 0.01   |
| totalbkg   | 2524.28 | 182.76 | 3.22   | 24.23  | 0.61   |
| totalMC    | 2549.88 | 184.59 | 3.46   | 24.35  | 0.65   |

#### Reach the same result for all conditions

#### 2. Help to check some samples

- check out whether all the samples are complete and right
- check the year and the recommendation for the data

<sup>2023/1/5</sup> download the missing samples

## Hardware work

#### 1. HGCal bonding

03

9





front side result meet our requirements performance as good as previous

backside: only import the program (lack of the proper base)



2. Do some other works at CERN

# **Plans for next steps**



### Plans:

Analysis of ttz'

- Try to solve the problem in signal and finish the top reconstruction part
- Discuss the analysis strategy
- Give a talk on B2G-Resonances in January

Analysis of 4top:

- Help to do some other things if need Hardware working:
- Do some other works at CERN



# Thanks

#### 01 Analysis of ttZ' Cross section study $\mathcal{L}_{int} = \bar{t}\gamma_{\mu}(c_LP_L + c_RP_R)tV_1^{\mu} = c_t\bar{t}\gamma_{\mu}(\cos\theta P_L + \sin\theta P_R)tV_1^{\mu}$ $P_{R/L} = (1 \pm \gamma_5)/2$ is projection operators $c_t = \sqrt{(c_L)^2 + (c_R)^2}$ is coupling of vector singlet with top quarks $tan\theta = c_R/c_L$ tangent of the chirality angle tan = 0, tangent = 0,



# Analysis of ttZ'



There are two ways to produce a top-philic resonance at the LHC: at one loop and at tree level



In our analysis, we focus on the production of the tree level

#### So we will have these different cases for Z' coupling to tops

|       | 0 top (hadronic decay) | 1 top        | 2 top        | 3 top        | 4top |
|-------|------------------------|--------------|--------------|--------------|------|
| 0 lep |                        |              |              | tjZ' or tWZ' | ttZ' |
| 1 lep |                        |              | tjZ' or tWZ' | ttZ' or tWZ' |      |
| 2 lep |                        | tjZ' or tWZ' | ttZ' or tWZ' |              |      |
| 3 lep | tjZ' or tWZ'           | ttZ' or tWZ' |              |              |      |
| 4 lep | ttZ' or tWZ'           |              |              |              |      |

We aim to consider hadronic top and at least 1,2 muons, to intercept scenario explaining B-physics anomalies

2023/1/5



#### tjz' branch ratio of events going to leptons: (The results are as expected!)

|           | expected | observerd 1TeV | observerd 2TeV | observerd 3TeV |
|-----------|----------|----------------|----------------|----------------|
| 0 leptons | 31.72%   | 31.07%         | 30.77%         | 30.76%         |
| 1 leptons | 43.12%   | 43.97%         | 44.28%         | 44.35%         |
| 2 leptons | 21.56%   | 21.53%         | 21.48%         | 21.43%         |
| 3 leptons | 3.60%    | 3.44%          | 3.47%          | 3.46%          |

#### ttz' branch ratio of events going to leptons:

|           | expected | observed 0.5TeV | observerd 1.5TeV | observerd 3TeV |
|-----------|----------|-----------------|------------------|----------------|
| 0 leptons | 20.15%   | 31.85%          | 31.85%           | 31.75%         |
| 1 leptons | 39.70%   | 42.27%          | 42.47%           | 42.13%         |
| 2 leptons | 29.33%   | 20.85%          | 20.62%           | 20.95%         |
| 3 leptons | 9.63%    | 4.67%           | 4.68%            | 4.76%          |
| 4 leptons | 1.19%    | 0.36%           | 0.38%            | 0.40%          |

Finding the reasons: we have accidentally defined all the decay channel except the tau in the proc card

now is working on this