

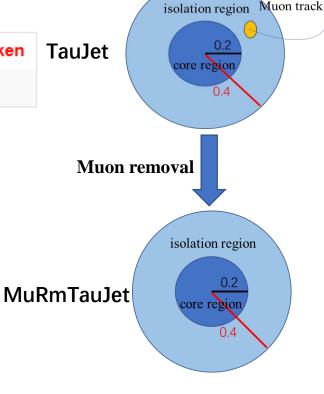
2022年第四季度考核

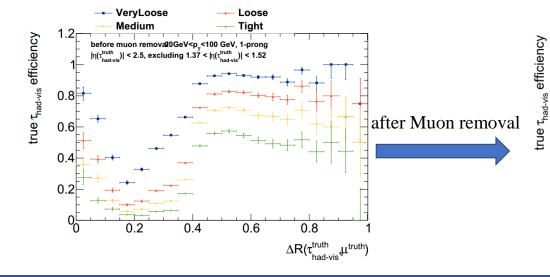
Hao Zeng,

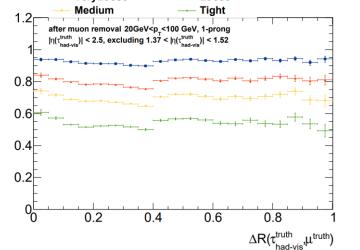
Advisor: João Guimarães da Costa

January 6, 2023

Content

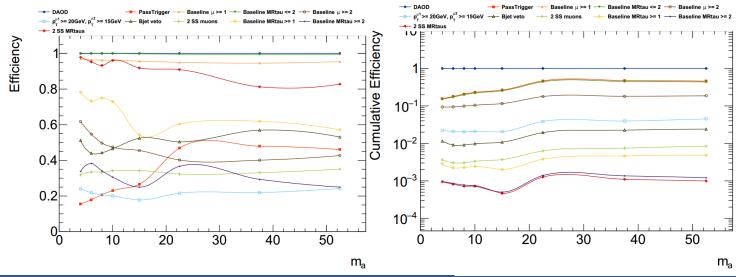

- H \rightarrow 2a \rightarrow 4tau merged analysis:
 - New derivation TAUP6 production is done
 - Signal yields and efficiency look good
- Qualification task: HGTD module automation assembly
 - QT note finished
 - Final report was given in the HGTD week
 - QT was approved
- MOST2 vertex test beam at DESY
 - Services and shifts work


$H \rightarrow 2a \rightarrow 4\tau$ Merged Analysis



- The muon removal code was merged into the official repository
- The new derivation TAUP6 production is done
 - Run 2 data
 - Signal and background MC samples
 - data15: https://prodtask-dev.cern.ch/prodtask/inputlist_with_request/45790/ done
 - data16: https://prodtask-dev.cern.ch/prodtask/inputlist_with_request/45791/ done
 - data17: https://prodtask-dev.cern.ch/prodtask/inputlist_with_request/45792/ done
 - data18: https://prodtask-dev.cern.ch/prodtask/inputlist_with_request/45793/ done

$H \rightarrow 2a \rightarrow 4\tau$ Merged Analysis


- Signal cutflow yields:
 - Keep the similar cutflow as the resolved 4τ analysis
 - More signal yields in the merged regime than the resolved regime
 - The final cumulative efficiency is more or less the same for both the merged regime and resolved regime.
 - All the background except the fakes are estimated from MC and they are all under control

background

cut name	ttbar	Tribosons	WZ	ggZZ	qqZZ	ttW	ttbarZ
DAOD	2.0e + 06	229	60035	364	14643	9791	2701
PassTrigger	1.5e + 06	177	39810	297	10029	5801	2179
Baseline $\mu \geq 1$	1.4e + 06	174	39129	294	9905	5310	2038
Baseline $MRtau \leq 2$	1.4e + 06	174	39120	293	9899	5307	2034
Baseline $\mu \geq 2$	512319	134	20715	229	7667	1829	1395
$p_T^{leadmu} \geq 20 GeV,$	325296	106	14374	180	5386	893	1076
$p_T^{subleadmu} \ge 15 GeV$							
Bjet veto	29153	90	12851	155	4801	76	87
2 SS muons	1734	1.5	773	1.3	49	22	3.3
Baseline $MRtau \ge 1$	262	0.39	94	0.25	6.3	2.8	0.83
Baseline $MRtau \geq 2$	13	0.04	3.4	0.02	0.35	0.16	0.06
2 SS MRtaus	7.5	0.03	1.4	0.01	0.25	0.06	0.03
				•			

signal

cut name	4 GeV	6 GeV	8 GeV	10 GeV	15 GeV	22.5 GeV	37.5 GeV	52.5 GeV
DAOD	34328	18607	15205	13859	12606	4337	4597	7295
PassTrigger	5376	3334	3163	3191	3353	2036	2204	3359
Baseline $\mu \geq 1$	5213	3212	3044	3067	3208	1934	2084	3205
Baseline $MRtau \leq 2$	5202	3207	3039	3062	3200	1925	2072	3188
Baseline $\mu \geq 2$	3213	1755	1510	1453	1457	774	831	1362
$p_T^{leadmu} \geq 20 GeV,$	772	384	312	291	260	167	182	330
$p_T^{subleadmu} \ge 15 GeV$								
Bjet veto	396	169	138	136	136	84	104	175
2 SS muons	126	57	46	46	47	27	34	62
Baseline $MRtau \ge 1$	98	41	35	34	25	16	21	35
Baseline $MRtau \geq 2$	33	16	12	10	6.3	6.0	6.2	8.8
2 SS MRtaus	33	15	11	9.9	5.8	5.5	5.1	7.3

Qualification task: HGTD module automation assembly

- The qt note draft has been finished
 - Summarized almost all HGTD module assembly work at IHEP
 - Hardware and software of the gantry system
 - Module assembly details
 - Preliminary metrology results
- The qualification was approved after the qt final report at HGTD week (link)

19	2	Har	dware for ATLAS HGTD Automated Module Assembly					
20		2.1	Coretech Gantry Positioning System					
21		2.2	Keyence vision system					
22		2.3	Nordson EFD Glue Dispensing controller					
23		2.4	Customized tools					
24	3	Soft	ware for ATLAS HGTD Automated Module Assembly					
25		3.1	Main GUI of Gantry System Controller					
26		3.2	Camera coordinate calibration					
27		3.3	Pick and release parameters					
28		3.4	Dispensing settings					
29		3.5	Module assembly workflow setting					
30	4	ATI	AS HGTD Module Assembly Procedures 2					
31		4.1	Automation HGTD module assembly procedure concept					
32		4.2	Semi-automation HGTD module assembly procedures					
33			4.2.1 Manual alignment					
34			4.2.2 Gluing calibration					
35			4.2.3 Automation glue dispensing and module components pick-and-place					
36			4.2.4 Study on glue pattern and glue weight					
37	5	The	modules assembled using gantry system at IHEP					
38		5.1	The assembled digital modules					
39		5.2	The assembled full modules					
40			5.2.1 The result of module dimension					
41			5.2.2 The gap between two bare modules					
42			5.2.3 The rotation between module flex and bare modules					
43			5.2.4 The module planarity					
44	6	Sum	nmary and Outlook 3					

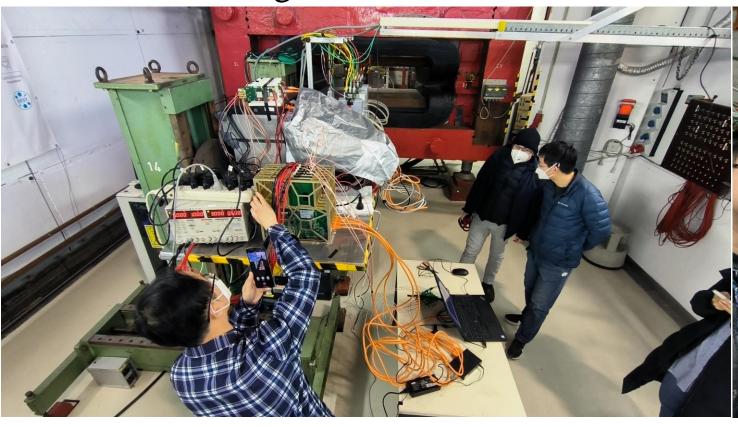
7 Contents

✓ Summary

Qualification status:

ss 2021-07-01

2021-07-0


Qualification Period

2022-09-22 105%

MOST2 vertex test beam at DESY

- Dec 10 Dec 22
- Services and shifts work
- Learnt a lot things of test beam

Summary & next

- H \rightarrow 2a \rightarrow 4tau merged analysis:
 - New derivation TAUP6 production is done
 - Signal yields and efficiency look good
 - All the background except the fakes are estimated from MC and they are all under control
 - Next:
 - Fake estimation, uncertainty study, etc.
- Qualification task: HGTD module automation assembly
 - QT was approved finally
- MOST2 vertex test beam at DESY
 - Services and shifts work
 - Next:
 - April test beam (full mechanical structure)? Offline analysis