

中國科學院為能物路湖完備 Institute of High Energy Physics Chinese Academy of Sciences

2021.09-2021.12研究生考核

贾雪巍

Supervisor:Joao Guimaraes da Costa 2023/01/06

Outline

- Analysis:
 - Low-mu W/Z pT measurement
 - Low-mu W mass measurement
- Detector:
 - ATLAS HGTD testbeam
 - CEPC MOST2 testbeam

Low-µ W Z pT measurement

 Finalized the <u>channel combination</u>, modify iteration in the combination

Bias correction with iteration in the combination:

- Previous: Scale covariance matrix with factor iter_n/iter_n-1, treat all errors proportional(scale linearly)
- Modified: Scale statistic in sqrt, Linear scale for sys, No scale to bkg
- Integral xsec and xsec ratio calculation

Process	Cross section at $\sqrt{s} = 5$ TeV [pb]	Cross section at $\sqrt{s} = 13$ TeV [pb]
$W^+ \to \ell \nu$	2211.8 ± 2.5 (stat.) ± 7.5 (sys.) ± 36.6 (lumi.)	$4614.5 \pm 3.1 \text{ (stat.)} \pm 21.0 \text{ (sys.)} \pm 72.6 \text{ (lumi.)}$
$W^- \to \ell \nu$	1373.4 ± 2.0 (stat.) ± 5.3 (sys.) ± 22.9 (lumi.)	3518.2 ± 2.7 (stat.) ± 17.1 (sys.) ± 55.8 (lumi.)
$Z \to \ell \ell$	331.1 ± 1.2 (stat.) ± 2.2 (sys.) ± 5.3 (lumi.)	787.8 ± 2.7 (stat.) ± 7.5 (sys.) ± 11.8 (lumi.)
	Table 22: Integrated fiducial cross sections for W^+ , W	$^{\prime-}$ and Z production in pb as well as the ratio of cross se

a

Processes	Cross-section ratio at $\sqrt{s} = 5$ TeV	Cross-section ratio at $\sqrt{s} = 13$ TeV
W^{+}/W^{-}	1.608 ± 0.005	1.312 ± 0.004
W^+/Z	6.69 ± 0.08	5.86 ± 0.09
W^-/Z	4.16±0.05	4.47 ± 0.07
W^{\pm}/Z	10.86 ± 0.12	10.38 ± 0.15

Table 23: Integrated cross-section ratios.

13/5 TeV Ratio 2.08 ± 0.05 2.56 ± 0.06 2.38 ± 0.06

ctions

Low- μm_W measurement

- Attended ATLAS w mass workshop @DESY in Sep
 - Met analysis team
 - Kick-off talk representing IHEP group
- Working on EW correction systematic in m_W
 - Generate spectrum with full QED+weak correction
 - Next input into mass fit

Xuewei Jia

14:30

mw kick-off : expertise/plans and person power	(§ 1h		
Speakers : Fabrice Balli (Université Paris-Saclay (FR)), Hicham Atmani (Shandong University (CN)), Jan Kretzschmar (University of Liverpool (GB)), Matthias Schott (CERN / University of Mainz), Raimund Strohmer (Julius Max. Universitaet Wuerzburg (DE)), Xiaowen Su (Université Paris-Saclay (FR)), Xuewei Jia (Chinese Academy of Sciences (CN))			
Mainz	🕓 5m		
Speaker : Matthias Schott (CERN / University of Mainz)			
Würzburg	🕓 5m		
Speaker : Raimund Strohmer (Julius Max. Universitaet Wuerzburg (DE))			
Liverpool (&DESY)	🕓 5m		
Speaker: Jan Kretzschmar (University of Liverpool (GB))			
🕑 Wm_Liverp			
Saclay	🕓 5m		
Speaker: Fabrice Balli (Université Paris-Saclay (FR)) mWWorks			
Shandong	🕓 5m		
Speaker : Hicham Atmani (Shandong University (CN)) B Wmass.pdf			
IHEP	🕓 5m		
Speaker: Xuewei Jia (Chinese Academy of Sciences (CN))			
😕 W mass ki			
IJCLab	🕓 5m		
Speaker: Xiaowen Su (Université Paris-Saclay (FR))			
➢ kickoff_ijcl			

Hardware work

- ATLAS HGTD testbeam:
- Set up ALTIROC(HGTD module) testbench @CERN, facilitate tests at testbeam
- HGTD testbeam shifts

Xuewei Jia

Top 5 shifters in 2022!

Any shifts:

Xuewe

(17)

(6)

Mario (19)

🔹 Night birds 🦉 (night shifts):

(7)

(19)

Océane

(7)

(7)

16 Nov. 2022

Hardware work

- CEPC MOST2 testbeam @ DESY
- Many people got covid, so I joined in the last week to get covid...
- Helped to check the run parameters during the runs

Xuewei Jia

Resolution(microns) in X and Y direction of 6 chips

Hardware work

• IHEP-IMEv2 LGAD radiation hardness paper published

"Design and testing of LGAD sensor with shallow carbon implantation"

Nucl.Instrum.Meth.A 1046 (2023) 167697

202 May 31 [physics.ins-det] arXiv:2205.05025v2

Design and testing of LGAD sensor with shallow carbon implantation

Kewei Wu^{a,b,c,1}, Xuewei Jia^{a,b,c,1}, Tao Yang^{a,b,c}, Mengzhao Li^{a,b,c}, Wei Wang^{a,c}, Mei Zhao^{a,c,*}, Zhijun Liang^{a,c,*}, João Guimarães da Costa^a, Yunyun Fan^{a,c}, Han Cui^{a,b,c}, Alissa Howard^d, Gregor Kramberger^d, Xin Shi^{a,c}, Yuekun Heng^{a,b,c}, Yuhang Tan^{a,b,c}, Bo Liu^{a,c}, Yuan Feng^{a,b,c}, Shuqi Li^{a,b,c}, Mengran Li^{a,b,c}, Chengjun Yu^{a,b,c}, Xuan Yang^{a,c}, Mingjie Zhai^{a,b,c}, Gaobo Xu^e, Gangping Yan^{b,e}, Qionghua Zhai^{b,e}, Mingzheng Ding^e, Jun Luo^e, Huaxiang Yin^e, Junfeng Li^e

^aInstitute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan, Beijing 100049, China ^b University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan, Beijing 100049, China

^cState Key Laboratory of Particle Detection and Electronics, 19B Yuquan Road, Shijingshan, Beijing 100049, China

^dJoef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

^eInstitute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Chaoyang, Beijing 100029, China

Abstract

The low gain avalanche detectors (LGADs) are thin sensors with fast charge collection which in combination with internal gain deliver an outstanding time resolution of about 30 ps. High collision rates and consequent large particle rates crossing the detectors at the upgraded Large Hadron Collider (LHC) in 2028 will lead to radiation damage and deteriorated performance of the LGADs. The main consequence of radiation damage is loss of gain layer doping (acceptor removal) which requires an increase of bias voltage to

Email addresses: zhaomei@ihep.ac.cn (Mei Zhao), liangzj@ihep.ac.cn (Zhijun Liang)

Preprint submitted to NIMA

June 1, 2022

^{*}Corresponding Author

Thanks!

Back-up

中国科学院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Xuewei Jia

- Stat sqrt scale
- Bkg scale 1
- Sys Linear scale

