

Institute of High Energy Physics Chinese Academy of Sciences

Work process

Student: Jialin guo Supervisor : Mingshui Chen CMS 2022.9-2022.12

Institute of High Energy Physics Chinese Academy of Sciences

• Analysis

Search for high mass Higgs(500-3000GeV) in HZZ2L2Q final state with Full RunII Data

Search for aTGC in Semileptonic WV and ZV channels

HZZ2L2Q Analysis

Institute of High Energy Physics Chinese Academy of Sciences

Available on the CMS information server

CMS AN-21-172

The Compact Muon Solenoid Experiment CMS Draft Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

2022/12/16 Archive Hash: 632f401-D Archive Date: 2022/11/30

Search for spin-0 diboson resonances in the dilepton + jets final state at $\sqrt{s} = 13$ TeV with full Run II dataset

Alessandra Cappati⁴, Mingshui Chen¹, Tongguang Chen², Aloke Kumar Das⁷, Jialin Guo¹, Mi Ran Kim⁶, Prolay Mal⁷, Predrag Milenovic³, Vukasin Milosevic¹, Christophe Ochando⁴, Giacomo Ortona⁵, Axel Newton Buchot Perraguin⁴, Roberto Salerno⁴, and Ram Krishna Sharma¹

A search for a new boson decaying into two Z bosons with subsequent decay into two leptons and two quark-jets, $H \rightarrow ZZ \rightarrow llq\bar{q}$ is performed. The analysis uses 137.64 fb⁻¹ of data collected by the CMS experiment from proton-proton collisions produced in LHC at $\sqrt{s} = 13$ TeV in Run II (2016, 2017, 2018). The analysis exploits the kinematic information and the flavour tagging of the leading particles of the event to isolate hypothetical Higgs boson signals with mass values in the range from 500 GeV to 3000 GeV. Dedicated categorisations are tailored, which is expected to be favoured by the VBF production mechanism of a scalar particle. The results are summarised in terms of upper limits on the production cross section for a spin-0 particle.

• Status

- **>** Go through all the steps with UL datasets
- Preliminary Limit result
- > AN-Note(<u>AN-21-172</u>)

• Plan

- > Uncertainty study
- > Ask for CADI Line and prepare re-approval report

aTGC Analysis

ZV Channel

 Z^0, W^{\pm}

IHEP

★First analysis with ZV semi-leptonic

 γ, Z^0, W^{\pm}

Institute of High Energy Physics Chinese Academy of Sciences

WV Channel

Where:

$$\mathcal{O}_{www} = Tr[W_{uv}W^{v\rho}W_{\rho}^{u}], \mathcal{O}_{w} = (D_{u}\phi)^{\dagger}W^{v\rho}(D_{v}\phi), \mathcal{O}_{B} = (D_{u}\phi)^{\dagger}B^{v\rho}(D_{v}\phi)$$

Effective field theory(EFT): the natural way to extend the standard model

<u>Theoretical Description</u> $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$

Satisfy the S-matrix axioms of unitary, symmetries of the standard model(SM)

General enough to capture any physics beyond the standard model

Lead to:

 $\frac{c_w}{\Lambda^2} = \frac{2}{M_z^2} \left(tan^2 \theta_w \Delta \kappa_\gamma + \Delta \kappa_z \right), \frac{c_B}{\Lambda^2} = \frac{2}{M_z^2} \left(\Delta \kappa_\gamma - \Delta \kappa_z \right)$

Status

- NanoAOD Framewok is ready
- Datasets produce & basic event selections

Recover the standard model $\Lambda \gg m$, $\mathcal{L}_{eff} \rightarrow \mathcal{L}_{SM}$

Preliminary Data MC looks fine

 $= \mathcal{L}_{SM} + \frac{c_{WWW}}{\Lambda^2} \mathcal{O}_{WWW} + \frac{c_W}{\Lambda^2} \mathcal{O}_W + \frac{c_B}{\Lambda^2} \mathcal{O}_B$

12 July 2022

Search for aT(N)GC in Semileptonic WV and ZV channels

Mingshui Chen, Tongguang Cheng, Jialin Guo, Andreas Hinzmann, Ankita Mehta, Vukasin Milosevic, Ram Krishna Sharma

Chinese Academy of Sciences

Thanks