2022.9-12研究生考核报告

导师:梁志均 学生:黄鑫辉 01/06/2023

Content

- Analysis:
 - Measurement of ZZ CP-violation and polarization in four-lepton dataset in 13 TeV proton-proton collisions with the ATLAS detector
 - Spin correlation analysis
 - Unfolding & systematic uncertainties check
 - 1st circulation and SM approval
- Module Assembly
 - ATLAS High-Granularity Timing Detector(HGTD) module assembly with gantry system (with Hao Zeng)
 - Digital module & full module assembly
 - Assembling accuracy improvement
 - ATLAS HGTD support unit planarity measurement & module loading (QT)
 - Gluing study
 - CEPC MOST2 vertex detector
 - Prototype loading
 - Testbeam

ZZ CP-violation and polarization

Introduction

- We have measured with Run-2 data, which have luminosity of $139fb^{-1}$ and 13TeV. We focus on the qqZZ branch to measure the spin correlation of the ZZ pair and have already defined the spin correlation observable: decay angle $cos\theta_1$ and $cos\theta_3$.
- Already finish all 6 EB meeting
- SM approval meeting on 24th November.

Spin correlation analysis unfolding check

Sherpa Fid

Madgraph Asimov

Sherpa Unfolded w Madgraph

ATLAS Internal

-√s=13 TeV, 139 fb⁻

m₄₁ > 180 GeV

500

450

- We are try to do the unfolding for polarized samples with Migration matrix from sherpa qqZZ sample, to test unfolding bias with different hypothesis.
- ✓ Bias: < 5%</p>
- ✓ Compatible with the unfolding in CP analysis
- ✓ Acceptable for spin correlation analysis

Sherpa Asimov

Madoraph Unfolded w

Madgraph Fid

Unfolding & Systematic check

- ZZ CP observable: •
 - $Tyz \equiv \cos \theta \sin \phi$ (arXiv:1604.06677) defined to increase the asymmetry structure of Interference term
- Unfolding Bias check
 - Reweighting and calculating generator bias.
 - Spin correlation observables give similar results.

 $\mathcal{O}_{Tyz1,Tyz3}$ as final CP-sensitive observable

HGTD Module Assembly

- IHEP is developing automatic assembling system for HGTD program.
- Have already assembled 15 modules:
 - 5 full modules (flex PCB + hybrids)
 - 11 digital modules (flex PCB + ASICs)

- The assembling accuracy has been improved to 30µm;
 - ✓ Add pattern recognition to the automatic assembly system;
 - \checkmark Can recognize the sensor and flex with high precision;
- Some of our assembling method and tooling are shared with USTC;
- Now aim to assemble 19 modules for demonstrators before April.

HGTD Module Assembly

- ♦ Gluing study
- Glue height on top of module flex to attach to the support unit is critical;
- Need glue to "absorb" variations of component thicknesses;
- Study on glue dots' weight, height and diameter (Measure with microscope).
 - Shape of the deposited glue (dome)

After placing the support (cylinder)

HGTD Module Assembly

Gluing study

- Dispensing height: 0.9 mm
- Dispensing time: 6 s
- Dispensing pressure: 5 bar
- Diameter: $2.389 \pm 0.044 \ mm$ (Fresh), $2.454 \pm 0.047 \ mm$ (Dry)
- Height: $446 \pm 47 \ \mu m$ (Fresh) , $381 \pm 31 \ \mu m$ (Dry)

CEPC MOST2 vertex detector

- Prototype loading
 - Assemble the MOST2 sensor and flex for prototype
 - Long flex cable (>20cm)
 - Very thin sensor (0.15mm)
 - High alignment (1 flex with 10 sensors)
 - Large amount (60 sensors in total)
 - Load module on three-layer barrel prototype.

Testbeam

- Building support structure of telescope.
- Shift and monitoring during testbeam.
- Testbeam in BSRF
 - Early test for telescope and sensor
 - Prepare for beamtest in DESY
- Testbeam in DESY
 - Formal test for telescope
 - Copper column→Resin shell
 - More stable and better alignment
 - Offline analysis for resolution
 - Prepare for prototype beamtest

Summary

- ZZ CP & Polarization analysis :
 - Have 6 EB meetings and 1 SM approval meeting.
 - Fix the reweighting function problem and reduce generator bias.
 - Test the unfolding method with different hypothesis.
 - Update the unfolding & systematic uncertainty plots in the note.
- HGTD Module Assembly :
 - Automatic assembling system:
 - Have improved the assembling accuracy to 30µm.
 - · More modules were assembled and waited for test.
 - Glue dots study
 - The glue dots' shape(diameter and height) can be well controlled in IHEP with gantry system.
- CEPC MOST2 vertex detector
 - Successful testbeam in DESY.
- Next steps:
 - ZZ CP & Polarization analysis:
 - Working on unfolding, systematic uncertainties & spin correlation with latest MC samples and reply the comments.
 - Module Assembly:
 - Assemble 19 modules for HGTD demonstrator before April.
 - Try to load the modules on the support units.

ATLAS Note ANA-STDM-2021-05-INT1 8th December 2022

Measurement of ZZ CP-violation and polarization in
four-lepton dataset in 13 TeV proton-proton
collisions with the ATLAS detector

⁵ Zhou, Bing^a, Yuan, Man^a, Xu, Tairan^b, Xu, Lailin^b, Wu, Yusheng^b, WANG, Iria
⁶ Wanyan^c, SCHILLACI, Zachary Michael^c, Pilkington, Andrew^d, LIU, Xiaotian^b,
⁷ LIU, Mingyi^b, LIANG, Zhijun^e, HUANG, Xinhui^e, HANKACHE, Robert^d,

Goblirsch-Kolb, Maximilian^c, Bhattarai, Prajita^c, DU, Dongshuo^b, Li, Bing^f

^aMichigan ^bUniversity of science and technology of China ^cBrandeis ^dManchester ^cInstitute of High Energy Physics, Chinese Academy of Sciences ^fShandong University

- This note describes the measurement of CP-violation and polarisation in $ZZ \rightarrow 4l$ dataset
- using the proton-proton collision data collected by the ATLAS detector from 2015 through 2018 at $\sqrt{n} = 12$ TeV according to an integrated luminosity of 120 ft⁻¹. The polarization
- 2018 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb⁻¹. The polarization parameters are measured in the process of Z-bosons pair to 4 leptons channel. The CP-violation
- are searched with ZZ events in the on-shell mass region using Effective Field Theory (EFT)
- approach. The LL component of ZZ is extracted from a global fit and the expected significance
- is about 3.82 σ . The measurement of the polarization and spin correlations provides a stringent
- test of the gauge and electroweak symmetries in the Standard Model and thus opens the door
- to the origin of the electroweak symmetry breaking.