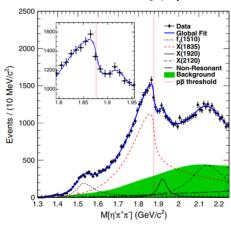


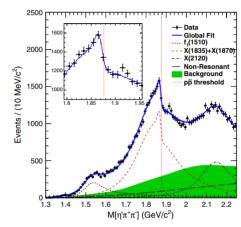
2022年9-12月研究生考核报告

报告人: 马晓天

导师: 黄燕萍

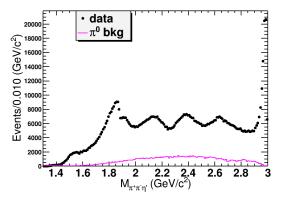
实验物理中心高能量物理组


工作内容


BESIII探测器对J/ψ衰变的分析

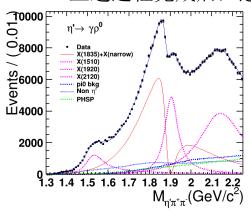
- * 用 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 过程分析X(1835)
- ❖ 多变量的本底研究
- * $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ 分波分析研究X(2370)和X(1835)

$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 分析X(1835)

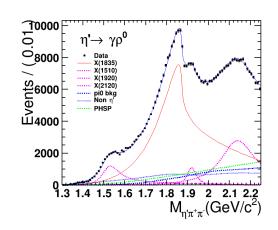

- ❖ 研究动机
 - 基于BESIII在2012年收集的10亿 J/ψ 事例,在 $\pi^+\pi^-\eta'$ 质量谱 $p\bar{p}$ 阈值附近观测到了反常线型,揭示了1.85GeV附近宽共振态和 $p\bar{p}$ 末态或者窄阈下共振态的强烈耦合
 - 基于100亿 J/ψ 事例,使用 $J/\psi \to \gamma \pi^+ \pi^- \eta'$ 过程对X(1835)做更精确的分析

2012年数据观测到的反常线型(左右图分别为 Flatté和Breit-Wigner相 干干涉拟合结果)

- * 研究内容
 - Non- η' 和 $J/\psi \to \pi^0 \pi^+ \pi^- \eta'$ 本底估计
 - 双BW干涉和Flatté模型拟合 $\pi^+\pi^-\eta'$ 质量谱



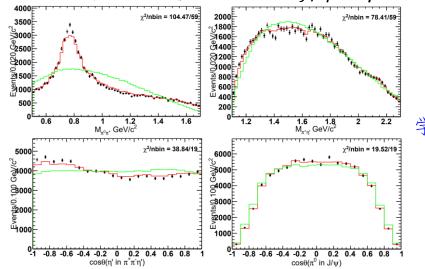
 $\eta' \rightarrow \gamma \pi^+ \pi^-$ 道 终选后数据和 估计本底分布


$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 分析X(1835)

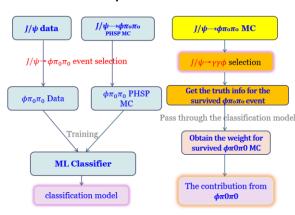
* 研究进展及计划

- 采用双BW干涉和Flatté模型描述X(1835),拟合 $\pi^+\pi^-\eta'$ 质量谱,得到X(1835)的质量宽度,进一步验证了1.85GeV附近宽共振态和 $p\bar{p}$ 末态或者窄阈下共振态的强烈耦合
- X(1835)、X(narrow)的质量和2012年数据结果存在3倍误差偏差,下一步需进一步检查
- 采用了传统reweight方法和R值进行 $J/\psi \to \pi^0\pi^+\pi^-\eta'$ 本底估计,下一步需比较两种本底估计方法,确定更准确的 π^0 本底估计
- 上述过程完成后,进行系统误差分析

Breit-Wigner相 干干涉拟合


Flatté函数拟合

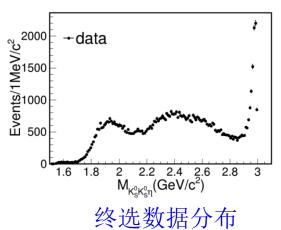
	Mass(Mev)	Γ(MeV)	Branch Ratio	Significance	
X(1835)	1837.8 ^{+6.9} _{-6.3}	369.4 ^{+18.8} _{-17.2}	4.29×10^{-4}	-	
X(narrow)	1891.1 ^{+0.1} _{-0.1}	54.5 ^{+4.1} _{-3.9}	1.21×10^{-4}	26.32σ	
X(1920)	1911.8+2.4	74.5 ^{+4.0} _{-4.0}	1.00×10^{-4}	12.27σ	
log £	239306.8				

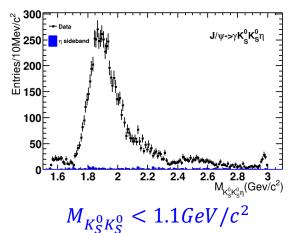

	Mass(Mev)	Γ(MeV)	Branch Ratio	Significance	
X(1835)	$1802.4^{+6.2}_{-6.2}(\mathcal{M})$	-	4.51×10^{-4}	-	
X(1920)	1927.8 ^{+1.4} _{-1.4}	48.0 ^{+6.1} _{-6.1}	1.67×10^{-5}	14.29σ	
g_0^2		_			
$g_{p\bar{p}}^2/g_0^2$					
log £	239324.6				

多变量的本底研究

- ❖ 研究动机
 - 基于XGBOOST,采用多维独立变量得到MC"像"数据的权因子,以此估计物理分析中不可约本底
 - 基于 $J/\psi \to \gamma \gamma \phi$ 中的 $J/\psi \to \phi \pi^0 \pi^0$ 本底估计,应用到 $J/\psi \to \gamma \pi^+ \pi^- \eta'$ 过程的 $J/\psi \to \pi^0 \pi^+ \pi^- \eta'$ 本底估计
- ❖ 研究内容
 - $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \eta'$ 事例选择
 - $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \eta'$ 本底估计
- ❖ 研究进展及计划
 - 建立了高MC数据比下的学习模型,下一步需调整得到同数据量学习模型
 - 优化学习模型后,进行 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 过程的 $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \eta'$ 本底估计

本底估计流程

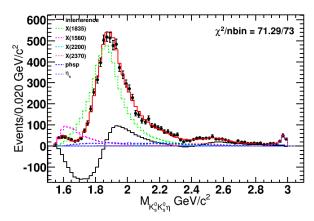

$J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ 的分波分析


❖ 研究动机

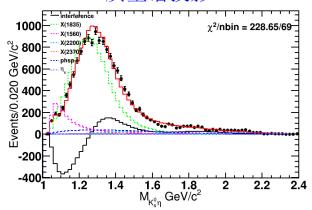
- 2009和2012年 $J/\psi \to \gamma K_S^0 K_S^0 \eta$ 事例的分波分析测定X(1835)的 J^{PC} 为 0^{-+}
- $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$ 的分波分析结果表明X(2370)的 J^{PC} 为 0^{-+} ,和胶球预期一致
- 基于100亿 J/ψ 事例,对 $J/\psi \to \gamma K_S^0 K_S^0 \eta$ 作分波分析,更新X(1835)的分析结果,并对 $J/\psi \to \gamma K_S^0 K_S^0 \eta$ 过程研究X(2370)

* 研究内容

- $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ 事例选择
- $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ 本底分析
- $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ 分波分析



$J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ 的分波分析


- * 研究进展及计划
 - 已得到分波分析初步解,在12月份BES年会轻强子组分会作了报告
 - 对于 $K_S^0\eta$ 质量谱未能拟合好,下一步需进行优化
 - 完成拟合优化后,进行系统误差分析

分波分析初步解

State	J ^{PC}	Decay Mode	M(GeV/c ²)	$\Gamma({ m GeV}/c^2)$	Significance	
X(1835)	0-+	$f_0(980)\eta$	$1.857^{+0.004}_{-0.004}$	$0.216^{+0.007}_{-0.007}$	>>30 <i>σ</i>	
X(1560)	0-+	$f_0(980)\eta$	$1.549^{+0.010}_{-0.011}$	$0.108^{+0.014}_{-0.012}$	23.3σ	
PHSP	0-+	$f_0(1500)\eta$	2.05	150	12.7σ	
η_c	0-+	$f_0(980)\eta$	2.9839	0.0320	28.9σ	
X(2370)	0-+	$f_0(980)\eta$	$2.496^{+0.020}_{-0.019}$	$0.281^{+0.051}_{-0.043}$	12.8σ	
X(2200)	1++	$f_0(980)\eta$	2.219 ^{+0.022} _{-0.021}	$0.215^{+0.044}_{-0.035}$	9.3σ	
S	12661.460					

质量谱投影

总结

BESIII探测器对I/ψ衰变的分析

- * 用 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 过程分析X(1835)
 - 两种模型拟合 $\pi^+\pi^-\eta'$ 质量谱上的反常线型,比较分析结果差异
 - 两种本底估计方法估计 $I/\psi \to \pi^0\pi^+\pi^-\eta'$ 本底,比较估计效果
- * 多变量的本底研究
 - 得到本底 $J/\psi \rightarrow \pi^0\pi^+\pi^-\eta'$ 学习模型
 - 下一步优化模型并估计 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 中 $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \eta'$ 本底
- * $J/\psi \to \gamma K_S^0 K_S^0 \eta$ 分波分析研究X(2370)和X(1835)
 - 得到了分波分析初步解,在12月份<u>BES年会轻强子组分会</u>作了报告
 - 继续优化分波解