

汇报人: 冯铭婕 导师: 李一鸣 高能量物理组

2022年8月至12月

工作概况

- 1. ATLASPix3 Telescope 系统
 - 校准时钟
 - 优化Trimming速度
 - 宇宙线测试
 - 会议海报: 2022 CEPC workshop
- 2. AMS Single Baby Sensor 宇宙线测试
- 3. LHCb上B和D介子关联产生的研究
 - 亮度计算
 - 参考道拟合和效率估计

1.1 ATLASPix3 Telescope System

Sensor 基本参数:

- Chip Size: $20.2 \times 21.4 \text{ mm}^2$
- Pixel Size: $150 \times 50 \ \mu m^2$
- 372 rows and 132 columns
- Triggerless/triggered readout

Pixel schematic

- Telescope系统可以同时搭载4个sensors
- 使用Vivado 2017编译FPGA
- 使用Qt框架设计软件界面

1.2 时钟校准

ATLASPix3 Telescope 系统不稳定(出现超出范围的像素点)!

输出的数据流不清晰

assign ckext = ~use_CkRef & (enable[3:0] != 4'b0) & clock;

删除固件中对时钟的操作

修改时钟后

输出的数据流清晰

Trimming: 使sensor上所有的pixel的阈值都接近一致,对于每一个pixel, trimming 时只需要改变TDAC值 (阈值的一个补偿,共有8个值)

Trimming 时间优化方法:

- 增加每次同时注入电荷的pixel的数目 (最好控制在22个pixels以内)
- 设置一个更高 (或更低) 的目标阈值来减少TDAC = 7 (或0) 的像素点的数目
- 在软件部分增加一个可以自定义目标阈值的模式

优化的效果 (7.5h to 5.5h) :

- 1. 增加每次同时注入电荷的pixel数目 (20 to 22)
- 2. 设置更低的目标阈值 (trimming前的阈值分布的1% to 0.1%)

1.4 宇宙线测试

- 使用ATLASPix3.1-05~24h
- 理论上sensor 表面一分钟内能够接收4个muons
- 仅使Layer4工作
- 由于还没有做ToT刻度,所以这里没有移除噪音

Trimming优化和宇宙线测试的结果在2022 CEPC workshop中以海报形式展示

B04: Charaterization and operation of ATLASPix3	Mingjie Feng	0
A214, IHEP	21:02 - 21:0	05

7

2 AMS Single Baby Sensor宇宙线测试

8

3.1物理背景

LHCb上B和D介子关联产生的研究

Quan Zou, Yiming Li, Nate Grieser, Jianchun Wang, Mingjie Feng

▷ 衰变道:
$$pp \to B^{\pm}D^0/\overline{D}^0X$$
 with $B^+ \to J/\psi(\mu^+\mu^-)K^+, D^0 \to K^-\pi^+$

▶ 分析目标:

- 1. 利用LHCb上13TeV pp对撞数据测量关联产生截面 σ_{BD} 2. 测量双部分子有效截面 $\sigma_{eff} = \frac{\sigma_B \times \sigma_D}{\sigma_{BD}}$
- 3. 寻找可能的 B_c 和 T_{bc} 激发态
- ▶ 本人在此分析中的主要贡献:

1. 亮度计算

2. 参考道拟合和效率估计

双部分子散射 Double-Parton Scattering

3.2 分析策略

- ▶ 衰变道: $pp \to B^{\pm}D^0/\overline{D}^0X$ with $B^+ \to J/\psi(\mu^+\mu^-)K^+, D^0 \to K^-\pi^+$
 - 测量道: $pp \to B^{\pm}D^0/\overline{D}^0X$
 - 参考道: $pp \to B^{\pm}X$

▶ 分析策略: 引入参考道, 测量r值

•
$$r = \frac{\sigma_{BD}}{\sigma_B} = \frac{1}{\mathcal{B}_{D \to K\pi}} \times \frac{N_{BD}^{fit}}{N_B^{fit}} \times \frac{1}{\varepsilon_D}$$
 其中, $\varepsilon_D = \varepsilon_D^{acc} \times \varepsilon_D^{rec\&sel} \times \varepsilon_D^{PID}$
• $\sigma_{BD} = r \times \sigma_B^{pub.}$ $\sigma_{BD} = \frac{N_{BD}}{\mathcal{L} \times \varepsilon_{BD} \times \mathcal{B}_{BD}}$
• $\sigma_{eff} = \frac{\sigma_B \times \sigma_D}{\sigma_{BD}} = \frac{\sigma_D}{r}$ $\sigma_B = \frac{N_B}{\mathcal{L} \times \varepsilon_B \times \mathcal{B}_{B^+} \to U/\psi K}$

3.3 亮度计算

▶ 选择条件:

- LHCb run2 2016 至 2018年的数据
- 官方提供了准确积分亮度的event
- data quality = OK
- 只保留与MC样本有相同L0触发条件的数据样本
- ▶ 亮度计算方法

根据每个event的run number从LHCb官方提供的亮度表中得到该event的精确积分亮度,所有 event的精确积分亮度之和即本分析数据样本的积分亮度

▶ 本分析数据样本的积分亮度

 $4.72~\pm~0.09~fb^{-1}$

3.4 参考道拟合

参考道 $pp \to B^{\pm}X$

- ▶ 选择条件:参考道和测量道选择条件保持一致
- ≻ 拟合PDF:
 - 信号PDF: Double Sided Crystal Ball + Gauss
 - 本底PDF: Exponential

 B^+ → $J/\psi(\mu^+\mu^-)K^+$ 対 P_T 的分bin 拟合 0 GeV < P_T < 40 GeV

 $5170 < M(B^+) < 5420$ 2 < y < 4.5

$$\varepsilon^{fit} = \frac{nsig([5170, 5420])}{nsig([5150, 5510])} = \frac{sigPDF \ Integral \ in \ [5170, 5420]}{sigPDF \ Integral \ in \ [5150, 5510]}$$

- ▶ R 值的计算需要的 N_B^{fit} 是全区间的 N_B
- ▶ 拟合只对其中特定区间[5170, 5420]MeV/c² 拟合

$$\succ N_B^{corr} = N_B^{fit} / \varepsilon^{fit}$$

总结和展望

▶ 总结

1. 在徐子俊老师的指导下参与了ATLASPix3和AMS相关的一些实验工作

2. 在李一鸣老师和邹全师兄的指导下参与物理分析工作,学习LHCb物理分析思路

▶ 会议报告

在2022 CEPC workshop上针对ATLASPix3 telescope系统的测试结果做了海报展示

- ▶ 展望
 - ATLASPix3 telescope 系统
 - 1. 继续寻找ATLASPix3 telescope系统不稳定的来源,并且试图解决不稳定性问题
 - 2. 利用塑料闪烁体探测器作为触发条件,搭建ATLASPix3 + 闪烁体探测器的宇宙线测试系统
 - 物理分析
 - 1. 使用LHCb run3的数据重新测量 σ_{BD}
 - 2. 计算 B^+ 介子和其他 D介子 (如 D^+ , D_s^+ , Λ_c) 联合产生截面

Thanks

Backup

参考道分bin拟合图

参考道拟合结果

$\boldsymbol{P}_{\boldsymbol{T}}(\boldsymbol{G}\boldsymbol{e}\boldsymbol{V}/\boldsymbol{c})$	$\chi^2/d.o.f$	signal yield (fitted)	Fitting efficiency	signal yield (corrected)
0 -1	1.07	30199 ± 254	0.993	30399 ± 256
1-2	1.11	95704 ± 413	0.984	97268 ± 420
2-3	0.97	153315 ± 515	0.982	156187 ± 524
3-4	1.10	190473 ± 578	0.983	193804 ± 588
4-5	1.12	200982 ± 582	0.984	204353 ± 592
5-6	1.21	191066 ± 556	0.981	194842 ± 567
6-7	1.05	169301 ± 491	0.990	170956 ± 496
7-8	1.44	147995 ± 481	0.984	150420 ± 489
8-9	1.25	122606 ± 444	0.981	124985 ± 453
9-10	1.09	99405 ± 373	0.982	101178 ± 380
10-14	1.40	244707 ± 641	0.959	255200 ± 669
14-40	1.42	168624 ± 539	0.980	172065 ± 550