

2022年9-12月研究生考核报告

汇报人: 宋绍炜 导师: 陈明水 6th, Jan. 2023

Content

Resonant HH → WWYY Motivation GEN level study object selection and event selection Data/MC comparison DNN training Preliminary limit result

HGCAL work

Gantry A3200 & Labview 2021 update

Gantry code update

Gantry calibration

Plans

Resonant HH \rightarrow WW $\gamma\gamma$

$X {\rightarrow} ~ HH \rightarrow WW \gamma \gamma$

Many BSM theories have predicted resonant Higgs-pair production

the warped extra dimension model predict the spin-0 radion and spin-2 graviton resona two higgs doublet model predict a spin0 heavy higgs boson which decay to dihiggs

First study of having the direct coupling with $WW\gamma\gamma$ final state in CMS

Why $WW\gamma\gamma$ Final state ?

the WW has second large BR in Higgs decay

 $\gamma\gamma$ has good mass resolution, easy to trigger and have high efficiency

Semi-leptonic channel strategy

Add Semi-leptonic Gen Level Study code in HiggsDNA framework based on numba

CMS Simulation GEN level Hgg_M3000 1000 Hgg_M2000 Hgg_M1500 Hgg_M1000 800 Hgg_M700 Hgg M300 Hww M3000 600 Hww_M2000 Hww_M1500 Hww_M1000 Hww_M700 Hww_M300 250 500 750 1000 1250 1500 1750 2000 pt(GeV) **CMS** Simulation **GEN** level

High mass region: boosted jet dominant Low mass region: resolved jets dominant

Semi-leptonic WW toplogy:

category	dR(q1,q2) dR(q1,l),dR(q2,l)			
$\begin{array}{c} \textbf{1jet(A)} \\ W & \downarrow l \\ W & \downarrow q \\ q \end{array}$	dR(q1,q2)<0.8 dR(1,q1)>0.8			
1jets(B) V	dR(q1,q2)<0.8 & dR(1,q1)<0.8 & dR(1,q2)<0.8			
$2jets(A) \qquad \qquad$	dR(q1,q2)>0.4 dR(1,q1)>0.4 dR(1,q2)>0.4			
$2jets(B) \qquad \qquad$	dR(q1,q2)>0.4 & (dR(1,q1)<0/4 dR(1,q2)<0.4)			

Write Semi-leptonic channel tagger in HiggsDNA framework

Add cut flow efficiency code for each selection

Photon		DiPhoton		Electron		Muon		Jet		FatJet	
Variable	Selection	Variable	Selection	Variable	Selection	Variable	Selection	Variable	Selection	Variable	Selection
p_T	>10GeV	$p_T^{\gamma_{lead}}[{ m GeV}]$	>= 35	p_T [GeV]	> 10	$p_T[\text{GeV}]$	>10	$p_T[\text{GeV}]$	> 25	$p_T[\text{GeV}]$	>= 200
$ \eta $	[0,1.4442]	$p_T^{\gamma_{lead}}$	>= 0.33	η	[0,1.4442]	η	[0, 2.5]	η	< 2.5	η	< 2.4
Electron co	[1.500,2.5]	$m_{\gamma\gamma}$		<i></i>	[1.300,2.4]	ID	Medium	$\triangle R(jet, \gamma)$	>0.4	$\triangle R(jet, \gamma)$	>0.8
		$p_T^{\gamma sublead}$	>= 0.25	axy	< 0.045 cm	pfRelIso0.	3_all < 0.3	$\triangle R(jet, e)$	>0.4	$\triangle R(jet, e)$	< 0.8
К9	> 0.8	$m_{\gamma\gamma}$		dz < 0.2	< 0.2 cm	dz	<0.045 cm	$\triangle R(iet, u)$	>0.4	$\triangle R(jet, \mu)$	< 0.8
Ное	< 0.08	20	>= 100 for	WPL(L	oose) id	dxy	< 0.2 cm	nuID	>=4		
HL	Γ cut	$p_{T \gamma \gamma}$	>= 400	$\triangle R(e, \gamma)$	>0.4	$\triangle R(\mu, \gamma)$	>0.4	puiD	>-2		
		m	[100GeV,	$\triangle R(e, jet)$	>0.4	$\triangle R(\mu, jet)$	>0.4	ID	>-5		
		$m_{\gamma\gamma}$	180GeV]			Globa	l muon				
Event S Start v Go thr At leas At leas At leas	election with diphoton tag ough WW Tagg st one good diph st one lepton st two jets / At le	ggers er oton pair east one fatjet	□ shaowei <> Code () \$* WWggFl This branch i	song / HiggsDN Dissues 11 Pull r H - HiggsDNA / s 34 commits ahead o	IA Public equests () Actions higgs_dna / taggers f main.	s 🗄 Projects 🕮 V	िर Pin वि Niki ① Security 🗠	Unwatch 1 - *	Fork 0 - 12	file v	
			shaowe	isong change the UL s	samples				4d05640 2 weeks ag	jo で	

Data/MC comparison plots without DNN cut

Data

QCD

γγ+jets

41.5 fb⁻¹ (13TeV)

Data

sclaed leadphoton pt (GeV

Wy(s)+jets γγ+jets γ+jet

tty(s)+jets MC Stat. En

Good agreement between Data and MC

Each SL & FH channel DNN input variable Data/MC comparison plot can be found on this web: https://shaoweisong.web.cern.ch/

DNN Training

Low good jet efficiency in FH channel Goals: Improve match efficiency

Using Mass Point 300GeV Signal

Loss function and ROC curve are fine

Improve the match efficiency from 16.8% to 43.7%

25 input features

- 4 jets 4D momentum information, and
- two dR with photon for each jet
- One sphericity which is defined in terms of the eigenvalues of the transversemomentum tensor. It is widely used for discriminating symmetric multi-jet topologies.

$$M_{xy} = \sum_{i} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{xi}p_{yi} & p_{yi}^2 \end{pmatrix}, \qquad \qquad S_{\perp,g}^{pheri} \equiv \frac{2\lambda_2}{\lambda_1 + \lambda_2}.$$

SL channel Signal and Background Modeling & Limit

Used multi-gaussians to construct the signal model Discrete profiling method for the background modeling

X Mass >300 GeV, almost all background can be rejected by $p_{T\gamma\gamma}$ >100 GeV cut

Mass point	Limit (pb^{-1})	$\begin{array}{c} \text{Limit} \\ (pb^{-1}) \end{array}$
300	14.8437	13.7109
500	8.8672 (4.0000
700	7.4609	3.7970
1000	7.3633	3.8437
1500	8.8672	4.3828
2000	10.3906	5.1328
2600	12.1875	6.9433
3000	14.0234	6.4219

Better limit result!

HGCAL Work

Gantry system & code update & Gantry Calibration

Create LD V3 New Glue Pattern

Dispense on sensor

3 patterns: point, arc, full circle Dispense pressure: 6 Dispense time: ~ 5 min

CMU New Position code (using fiducials and pins)

Gantry Calibration (Laser interferometer)

Learn and write Labview codes for gantry

Ready For Production!

Resonant HH \rightarrow **WW** $\gamma\gamma$:

A dedicated framework for the combination with FH & SL has been developed, tested and studied very detailed.

Using this new framework to get the combined limit result.

Combine paper with resonant $bb\gamma\gamma$ and $\tau\tau\gamma\gamma$

Combine the result with non-resonant WW $\gamma\gamma$ (HIG-21-014)

HGCAL Work:

HGCAL modules production

Develop visual tracking algorithm for gantry

New framework analysis strategy