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Outline of lectures

Part 1: Supermassive black holes in galactic nuclei: 
detections and mass measurements (2 lectures)

Part 2: Scaling relations between black holes and their 
host galaxies (2 lectures) 

Part 3: The cosmological evolution of AGN and BHs 
(2 lectures)

Part 4: The observational signatures of coevolution 
(2 lectures)
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Part 2: scaling 
relations between 

BHs and host galaxies



Galaxy structural parameters
Surface brightness profiles of galaxies:

Spiral NGC 7331

Spirals

Bulge: Sersic profile

Disk: exponential profile

Σ(R) = Σe exp{−bn[(R/Re)
1/n − 1]}

Σd(R) = Σ0 exp{−(R/hR)}

Σb(R) = Σe exp{−bn[(R/Re)
1/n − 1]}

Ellipticals

Sersic profile

Spheroids (Ellipticals or bulges)

Σe, Re, n are “structural 
parameters”

σe (L weighted velocity dispersion 
with Re), Le (L within Re) are 
another structural parameter



The Fundamental Plane 
There exist several relations among scaling parameters like

Re - Σe  Kormendy relation

σe - Le Faber-Jackson relation

These relations are just the 
projection of a 3-variate 
relation which is called the 
Fundamental plane of elliptical 
galaxies (spheroids)

log Re = α log σe +β log Σe

this is a “plane” in the log
space of Re σe Σe

Equivalent to

Re ~ σe1.4 Σe-0.9

Other relations are projection 
of fundamental plane and have 
thus larger dispersion



Re ∝ σe1.4 Σe-0.85        What is its physical meaning?

Assume spheroids are an homologous family (i.e. same structure):

Virial theorem: V2 = G M/Rg 

Mass/Light Ratio: M/L = Υ
Observed quantities are:
Re = kr Rg

σ2 = kv V2

Σe = L/2  (π Re2)-1

substituting in virial theorem 
Re = (2π G krkv Υ )-1 σ2 µe-1

Re ∝ σe2 Σe-1   different from observed relation!

It is then trivial to show that fundamental plane corresponds to

Re ∝ σe1.4 Σe-0.85   → →  M/L ∝ L0.2

That is M/L depends weakly on luminosity (older and more metal rich stellar 
populations in more luminous ellipticals).

Dependence on L0.2 is the “tilt” of the FP with respect to a homologous 
family (which would have M/L = constant).

The Fundamental Plane 



Do not abuse of correlations!
What we learn from scaling relations...

Venus
Yellowstone Park forest fire

Jeep Cherokee running in a garage
burning cigar

observable universe

... is sometimes nothing!

Kennicutt, 1989

Kennicutt 1989



Do not abuse of correlations!
What we learn from scaling relations...

Venus
Yellowstone Park forest fire

Jeep Cherokee running in a garage
burning cigar

observable universe

... is sometimes nothing!

Kennicutt, 1989

Kennicutt 1989



A. Marconi Beijing International Summer School 2011

First hints of BH-galaxy relations 

Kormendy & Richstone (1995) suggest 
the existence of a correlation between 
the total blue magnitude of the host 
spheroid (MB,bulge) and MBH.

bulge (spheroid) = entire galaxy in 
case of an elliptical

Kormendy & Richstone 1995
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More evidence ... 

Magorrian at al. (1998) find a 
correlation between MBH and bulge 
masses (“Magorrian” relation)

They use mostly low resolution 
ground based data.
Use stellar kinematics with 
axisimmetric 2-I dynamical 
models.
They find MBH/Mbulge~0.006.

Most mass estimates have been 
shown to be much 
overestimated (use of 2-I 
models).

Magorrian at al. 1998
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The MBH-σ correlation
Two groups (Ferrarese & Merritt 2000, Gebhardt et al. 2000) independently 
find a tight relation between MBH and the velocity dispersion of the stars in 
the galaxy bulge σ (within Re or Rc=Re/8)

Re and Rc  much larger than BH sphere of influence, σ should not be 
affected by BH, only by galaxy grav. potential!

Big and hot debate about the slope MBH ~ σ5 (FM00) and MBH ~ σ4 (G00)

Relation with σ is tighter than relation with B luminosity.

Ferrarese & Merritt 2000 Gebhardt et al. 2000

MBH-LB MBH-LB MBH-σMBH-σ
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The MBH-σ relation relation is considered the best one because is tighter 
than the MBH-MB,bulge and MBH-Mbulge correlations.

Tightness is related to the intrinsic scatter of MBH-X correlations, i.e. the 
dispersion in BH masses for given X (eg log σ) beyond measurement errors

“perfect” relation

What is the meaning of “tight”?

11

M = logMBH

V = log σP (M |V ) = δ(M − a− b V )

P (Mobs|V ) =

�
P (Mobs|M)P (M |V )dM

with errors on MBH measurement observed scatter is

P (Mobs|V )
1√

2πσM

exp

�
−1

2

�
Mobs − a− bV

σM

�2
�



Intrinsic scatter
a possible real (non perfect) relation

P (M |V ) =
1√
2πσ0

exp

�
−1

2

�
M − a− bV

σ0

�2
�

Tremaine et al. 2002

observed distribution for given V (σM error on Mobs)

observed dispersion (scatter, rms of fit 
residuals) of relation is therefore

σobs =
�

σ2
0 + σ2

M

intrinsic scatter of MBH-σ relation is 
estimated to be ~0.3-0.4 dex (factor 2-2.5 
dispersion of MBH for given sigma).

P (Mobs|V ) =
1�

2π(σ2
0 + σ2

M )
exp

�
−1

2

(Mobs − a− bV )2

(σ2
0 + σ2

M )

�

Beware that intrinsic scatter depends 
critically on the “accuracy” on MBH errors!



σ0 = 0.32± 0.05 dex

MBH-σ
204 GÜLTEKIN ET AL. Vol. 698

Figure 1. M–σ relation for galaxies with dynamical measurements. The symbol indicates the method of BH mass measurement: stellar dynamical (pentagrams), gas
dynamical (circles), masers (asterisks). Arrows indicate 3σ68 upper limits to BH mass. If the 3σ68 limit is not available, we plot it at three times the 1σ68 or at 1.5 times
the 2σ68 limits. For clarity, we only plot error boxes for upper limits that are close to or below the best-fit relation. The color of the error ellipse indicates the Hubble
type of the host galaxy: elliptical (red), S0 (green), and spiral (blue). The saturation of the colors in the error ellipses or boxes is inversely proportional to the area of
the ellipse or box. Squares are galaxies that we do not include in our fit. The line is the best fit relation to the full sample: MBH = 108.12 M!(σ/200 km s−1)4.24. The
mass uncertainty for NGC 4258 has been plotted much larger than its actual value so that it will show on this plot. For clarity, we omit labels of some galaxies in
crowded regions.

relation from sample S. The distribution of the residuals appears
consistent with a normal or Gaussian distribution in logarithmic
mass, although the distribution is noisy because of the small
numbers. For a more direct test of normality we look at log(MBH)
in galaxies with σe between 165 and 235 km s−1, corresponding
to a range in log(σe/200 km s−1) from approximately −0.075
to 0.075. The predicted masses for the 19 galaxies in this
narrow range differ by at most a factor of 4.3, given our
best-fit relation. The power of having a large number of
galaxies in a narrow range in velocity dispersion is evident
here, as there is no need to assume a value for the slope of

M–σ or even that a power-law form is the right model. The
only assumption required is that the ridge line of any M–σ
relation that may exist does not change substantially across
the range of velocity dispersion. The mean of the logarithmic
mass in solar units is 8.16, and the standard deviation is
0.45. The expected standard deviation in mass is 0.19, based
on the rms dispersion of log(σe/200 km s−1) (0.046) in this
range times the M–σ slope β; thus the variation in the ridge line
of the M–σ relation in this sample is negligible compared to
the intrinsic scatter. We perform an Anderson–Darling test for
normality with unknown center and variance on this sample of

Gultekin+2009
[49 MBH, 

19 upper lim.]

Graham+2010
[64 MBH]

log(MBH/M⊙) = (8.12± 0.08) + (4.24± 0.41) log(σ/200 km s−1)

log(MBH/M⊙) = (8.13± 0.05) + (5.13± 0.34) log(σ/200 km s−1)

σ0 = 0.44± 0.06 dex Gultekin+2009

Graham+2010

Countless papers in literature, considered 
two of the most recent ones!



A. Marconi Beijing International Summer School 2011

MBH-σ
Still problems related to sample selection 
(e.g. which BH masses to consider reliable ...)

adopted fitting methods 
(e.g. how to take into account the intrinsic scatter ...)

adopted errors in MBH and σ 

Gultekin takes 5% to σ, Graham takes 10% and this allows steeper 
slope

also smaller error in Gultekin gives larger intrinsic dispersion (0.44 vs 
0.32)

intrinsic scatter increases with increasing samples ... maybe MBH-σ 
relation is not so tight after all!

MBH-σ relation with ellipticals only appears to be tighter (i.e. bulges of 
spiral galaxies define a less tight relation than ellipticals):
0.31±0.06 vs 0.44±0.06 (Gultekin+09)
0.27±0.06 vs 0.32±0.06 (Graham+10)
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MBH-LK,bul (rms 0.3 in log MBH) MBH- σ (rms 0.25 in log MBH)

Marconi & Hunt 2003

MBH vs Luminosity in the NIR

Investigate the MBH-Lbul relation in the near-IR and consider only secure BH 
masses and galaxy structural parameters.
MBH-L relation is not worse than MBH-σ relation!

Marconi & Hunt 2003
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Figure 4. M–L relation for galaxies with dynamical measurements. The symbol indicates the method of BH mass measurement: stellar dynamical (pentagrams) and
gas dynamical (circles). Arrows indicate upper limits for BH mass. Squares are galaxies that we omitted from the fit. The color of the error ellipse indicates the Hubble
type of the host galaxy (elliptical (red) and S0 (green)) and the saturation of the color is inversely proportional to the area of the ellipse. The line is the best-fit relation
for the sample without upper limits: MBH = 108.95 M!(LV /1011 L!,V )1.11.

Figure 5. Histogram of residuals from best-fit M–L relation.

when using three-integral models. This, however, contrasts with
claims commonly made in other works: that strict resolution of
the sphere of influence is required for credible MBH determi-
nations and, more importantly, that MBH determinations made
from observations that do not resolve the sphere of influence
will be biased. Given the strong prevalence of this viewpoint,
and prompted by comments from the referee, we review its de-
velopment and application in the literature. We find, in fact, that
there is little or no support for the conclusion that MBH determi-
nation becomes increasingly biased with decreasing resolution.
It appears that the common but uncritical application of sphere-

of-influence-resolution as a way to cull MBH determinations
cannot be justified by careful reading of the very works often
cited in its support.

In their review article, Ferrarese & Ford (2005, page 539)
write, “All studies which have addressed the issue [of BH mass
determination and resolution level] . . . have concluded that re-
solving the sphere of influence is an important (although not
sufficient) factor: not resolving [Rinfl] can lead to systematic er-
rors on MBH or even spurious detections,” and cite the following:
Ferrarese & Merritt (2000); Merritt & Ferrarese (2001b, 2001a);
Graham et al. (2001); Ferrarese (2002); Marconi & Hunt (2003).
We consider each of these in turn.

Ferrarese & Merritt (2000) found that the ground-based MBH
measurements by Magorrian et al. (1998) were higher for fixed
velocity dispersion than the predictions of their empirical M–σ
relation and judged them to be therefore biased. The discrepancy
with their M–σ relation increased with increasing distance.
While discrepancy with the M–σ relation is not a justifiable
reason for excluding MBH measurements from the relation (the
argument is circular), the masses from Magorrian et al. (1998)
were, in fact, biased to high values by roughly a factor of 3.
The reason for the bias, however, is that they came from two-
integral, isotropic, axisymmetric models, not because they were
more poorly resolved (Merritt & Ferrarese 2001a; Gebhardt
et al. 2003b).

Merritt & Ferrarese (2001b) present similar arguments as
do Merritt & Ferrarese (2001a) who also go on to describe
the reason two-integral models yield masses that are biased
somewhat high. Merritt & Ferrarese (2001a) do mention that

MBH-L

log(MBH/M⊙) = (8.95± 0.11) + (1.11± 0.18) log

�
LV

1011 L⊙,V

�

σ0 = 0.38± 0.09 dex

Gultekin+2009
[E,S0]

1486 E. Sani et al.

3 R ESULTS

In the previous section, we have verified the validity of our 2D de-
composition by exploring the 3.6 µm FP for ellipticals, which turns
out to be as tight as that observed by JI08 (private communication).
Here, we study the relations between MBH and the bulge structural
parameters listed in Tables 2 and 3, respectively. To analyse the
MBH–bulge scaling relations, we adopt the following three different
fitting methods.

(1) A bisector linear regression (Akritas & Bershady 1996),
which uses the bivariate correlated errors and intrinsic scatter
(BCES) method. Whereas this method takes into account the in-
trinsic scatter, it does not allow any determination of it. Hence,
the intrinsic rms has been estimated with a maximum likelihood
method assuming normally distributed values.

(2) The linear regression FITEXY method as modified by T02,
which accounts for the intrinsic scatter by adding, in quadrature,
a constant value to the error of the dependent variable in order to
obtain a reduced χ 2 of 1.

(3) A Bayesian approach to linear regression, LINMIX_ERR
(Kelly 2007), which accounts for measurement errors, non-
detections and intrinsic scatter to compute the posterior probability
distribution of parameters.

The MBH–bulge relations we fit are in the following form:

log M•/M! = α + β × (x − x0), (2)

where x is the logarithm of a measured bulge structural parameter
expressed in solar units and x0 is its mean value used to reduce the
covariance between the fit parameters. As described below, the three
methods provide consistent results for the MBH–bulge relations.

Since the LINMIX_ERR is argued to be among the most robust
regression methods for reliable estimates of the intrinsic dispersion
(Kelly 2007), we use it to obtain the final results on the MBH–bulge
scaling relations. We still use the BCES and FITEXY methods for
comparison with previous works.

The fitting results are plotted in Figs 2, 3, and 5, where we present
the MBH–Lbul, MBH–Mdyn and MBH–σ relations, respectively. The
MBH–σ relation is analysed only to provide a consistent compari-
son with MBH–Lbul and MBH–Mdyn in terms of sample and fitting
methods.

We exclude from the linear regressions the nine sources classified
as pseudo-bulges. This allows us to verify, and possibly quantify,
whether pseudo-bulges follow the same scaling relations as classical
bulges. From a visual inspection of Figs 2–5, pseudo-bulges with
large BH masses (MBH > 107 M!) follow the relations, while those
with low BH masses deviate significantly from the scaling relations
defined by classical bulges. Deviant pseudo-bulges are analysed in
the following sections and discussed in Section 4.

In the following, after describing in details the MBH–bulge rela-
tions at 3.6 µm, we compare them with the published results ob-
tained at shorter wavelengths. Finally in Section 3.4, we explore the
possible MBH correlation with σ and Re separately as suggested by
MH03, Hopkins et al. (2007) and Graham (2008a).

Figure 2. Scaling relations. The MBH as a function of 3.6 µm luminosity (in equation 3). The linear regressions are shown as dot–dashed blue, dashed
green and red continuous lines, respectively, for the BCES, FITEXY and LINMIX_ERR methods, and are obtained from classical bulges only (47 sources).
Pseudo-bulges are open red squares.

C© 2011 The Authors, MNRAS 413, 1479–1494
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

Sani, AM+2010
[all]

log(MBH/M⊙) = (8.19± 0.06) + (0.93± 0.10) log

�
L3.6µm

1011 L⊙,3.6µm

�

σ0 = 0.38± 0.05 dex

Gultekin+2009

Sani, AM+2010

Countless papers in literature, considered 
two of the most recent ones!
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MBH-L

Difficulties in accurate decomposition of bulge and disk, especially in 
later type spirals.

Similar dispersion as MBH-σ 
0.38±0.09 vs 0.31±0.06 (E+S0, Gultekin+09)
0.38±0.05 vs 0.33±0.04 (E+S0, Gultekin+09)
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Häring & Rix 2004Marconi & Hunt 2003

MBH-Mbul

Tight correlation MBH vs virial bulge mass (≈ Re σe
2) with intrinsic 

dispersion σ0~0.25.
Linear slope (0.96+/-0.07), average ratio MBH/Mbul ≃ 0.002.
Häring & Rix 2004 find σ0 ~ 0.3 in log MBH with Mbul from dynamical 
models.



MBH-Mbul
Countless papers in literature, 

considered the most recent one!MBH–bulge scaling relations at 3.6 µm 1487

b)a)

Figure 3. Scaling relations. The MBH as a function of bulge dynamical mass (panel a) and bulge stellar mass (panel b). Pseudo-bulges are highlighted as red
open squares. In panel (b), the M/L is from equation (6). See Section 3.2 and Fig. 4 for details on the M/L calibrations.

Figure 4. Mdyn versus L3.6,bul. The black line represents the linear regression of equation (6).

3.1 MBH versus 3.6 µm bulge luminosity

To construct the MBH–L3.6,bul correlation, we compute the bulge
3.6 µm luminosity using the magnitudes obtained with the 2D de-
composition (see Section 2.3 for details) and reported in Table 3. To
derive 3.6 µm luminosities in solar units, we use the 3.6 µm solar

absolute magnitude obtained with a K-band value of 3.3 mag and
a K − [3.6] = 0.05 mag colour correction (Allen 1976, see also
Bessell & Brett 1988; Bell & De Jong 2001). The data for classical
bulges are fitted with the three linear regression methods described
at the beginning of this section. We obtain the following scaling
relation of MBH with 3.6 µm bulge luminosity (see Table 4 for the

C© 2011 The Authors, MNRAS 413, 1479–1494
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

log(MBH/M⊙) = (8.20± 0.06) + (0.79± 0.09) log

�
Mvir

1011 M⊙

�

Sani, AM+2010
[all]

σ0 = 0.37± 0.05 dex

Mvir from virial theorem 

Mvir = 5
Reσ2

G

Similar dispersion as other 
relations.

This is really a relation of 
MBH with a combination of 
bulge parameters.

Does Mvir really represents 
bulge mass?



Accuracy of virial bulge mass
Cappellari et al. 2006 studied a sample of E+S0 galaxies with

integral field kinematics (SAURON)
HST imaging
3-I Schwarzschild dynamical modeling

They measured dynamical masses with high accuracy
They demonstrated that tilt of FP is due to M/L variations, and not to 
variation in the dynamical structure of galaxies.
As a by-product they verified the accuracy of virial mass estimates in the 
central regions of E+S0 galaxies ...

The SAURON project – IV 1139

∼15 per cent of the observed tilt. For the more reliable correlations
involving σ , comparison of the virial prediction of equation (15) and
the modelling result of equation (7) indicates that non-homology can
account for at most ∼7 per cent of the tilt. Both relations consistently
imply that the FP tilt reflects essentially a real variation of the total
M/L in the central regions of galaxies, which can be due to vari-
ations in the galaxies’ stellar population and/or in the dark matter
fraction. A similar conclusion was reached by Lanzoni et al. (2004)
from general considerations about the observed scaling relations of
early-type galaxies. The comparison of this section, however, in-
volves uncertainties due to the fact that the tilt may depend on the
sample-selection criteria. To assess if this plays an important role
we perform in the next section a direct comparison of the virial
predictions for the M/L derived from our own galaxy sample.

4.5 Comparison with virial predictions of M/L

An alternative way to test the validity of the virial and homology
assumptions and their influence on the FP tilt is to compute the ‘ob-
served’ virial (M/L)vir ∝ R eσ

2
e/L and to compare it directly to the

M/L derived from the dynamical models. This has the advantage
that it can be performed on our own galaxies and does not involve
any choice of FP parameters or selection effects. We fitted the cor-
relations of (M/L)vir, in the I band, with σ and with luminosity,
obtaining:

(M/L)vir ∝ σ 0.82±0.07
e , (16)

(M/L)vir ∝ L0.27±0.04. (17)

Equations (16) and (17) have an observed rms scatter of 19 per cent
and 27 per cent, and are fully consistent with the FP determina-
tions in equations (15) and (14), respectively. The scatter in these
correlations of virial determinations is comparable to the scatter de-
rived using the full dynamical models and, as in that case, appears
dominated by the intrinsic scatter in M/L.

Finally, the most direct way of measuring the accuracy of the
homology assumption is to compare (M/L)vir with the M/L from
the dynamical models. The correlation is shown in Fig. 13 and has

0.0 0.2 0.4 0.6 0.8
log (M/L)vir

0.0

0.2

0.4

0.6

0.8

lo
g 

(M
/L

) S
ch

w

Figure 13. Comparison between the (M/L)vir = β Reσ
2
e/(L G) derived

from the virial assumption and the M/L obtained from the Schwarzschild
models. The values of (M/L)vir were scaled to match the dynamical M/L,
and the best-fitting factor is β = 5.0 ± 0.1. The solid line is a fit between
the two quantities, while the dotted line represents a one-to-one correlation.

the form

(M/L) ∝ (M/L)1.08±0.07
vir . (18)

The observed slope is consistent with the determination based
on the FP (Section 4.4), implying that both the structural and
the orbital non-homology contribution cannot represent more than
∼15 per cent of the FP tilt (neglecting possible selection effects in
our sample, which are very difficult to estimate). Contrary to all
correlations shown before, the scatter in this correlation is not influ-
enced by the errors in the distance, as both M/L estimates use the
same distance. Adopting an intrinsic accuracy of 6 per cent in the
M/L determinations (Section 4.1), the scatter in (M/L)vir required
to make χ 2/ν = 1 is 14 per cent. The correlation between the virial
and the Jeans estimates gives (M/L)Jeans ∝ (M/L)0.94±0.06

vir with very
similar scatter to the correlation (18).

Comparing the virial and Schwarzschild M/L estimates we can
provide a direct ‘calibration’ of the virial mass, and M/L estimator
(which are often used only in a relative sense):

(M/L)vir = β Reσ
2
e

(L G)
. (19)

The best-fitting scaling factor is β = 5.0 ± 0.1. We can compare this
value with the predictions from simple dynamical models, as done
by a number of previous authors (e.g. Michard 1980). For this we
computed the theoretical predictions for β from spherical isotropic
models described by the Sérsic profile R1/n , for different values
of n. The computation was performed using high-accuracy MGE
fits to the Sérsic profiles, obtained with the routines of Cappellari
(2002). From the fitted MGE models, which reproduce the profiles
to better than 0.05 per cent, the projected σ values can be computed
with a single one-dimensional numerical integration. The projected
luminosity-weighted σ was then integrated within a circular aper-
ture of radius Re to compute σ e which is needed to determine the
scaling factor β. In the range n = 2–10 the predicted β parameter
is approximated to better than 3 per cent by the expression

β(n) = 8.87 − 0.831n + 0.0241n2. (20)

(cf. Bertin, Ciotti & Del Principe 2002). The precise value predicted
for a R1/4 profile is β = 5.953 [the value becomes β = 5.872 with a
BH of 0.14 per cent of the galaxy mass as in Häring & Rix (2004)],
while the observed value of β ≈ 5.0 would correspond to a Sérsic
index n ≈ 5.5. However, the predictions of equation (20) only apply
in an idealized situation and do not take into account the details
in which (M/L)vir is measured from real data and the fact that
galaxies are not simple one-component isotropic spherical systems.
From our extended photometry (Section 2.2) we measured the n
values for the 25 galaxies of our sample by fitting the observed
radial surface-brightness profiles. The derived Sérsic indices span
the whole range n = 2–10 and will be presented in a future paper.
From the observed variation in the profiles β should be expected to
vary by a factor of ∼2.5 according to the idealized spherical model.
In practice, we find no significant correlation (linear correlation
coefficient r ≈ −0.13) between the measured β [the value required
to make (M/L)Schw = β R e σ 2

e/(L G)] and the one predicted by
equation (20). This shows that the idealized model is not a useful
representation of reality and cannot be used to try to improve the
(M/L)vir estimates. An investigation of the interesting question of
why the β parameter appears so constant in real galaxies and with
realistic observing conditions goes beyond the scope of the present
paper.

The results of this section show that the simple virial estimate of
M/L, and correspondingly of galaxy mass, is virtually unbiased, in

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 366, 1126–1150

�
M

L

�

vir,I

= (5± 1)
Reσ2

GLI

σ0 � 0.06 dex

Mvir is an excellent surrogate of 
more complex (and expensive) 
dynamical models!
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L vs Mstar
Virial masses provide accurate 
dynamical masses 

Comparing bulge luminosities with 
dynamical masses, we find that the 
MBH-L correlation is obviously a 
correlation with stellar mass 
(neglecting contributions from dark 
matter ...)

Luminosity at 3.6 μm is an 
excellent tracer of (stellar) mass

21

MBH–bulge scaling relations at 3.6 µm 1487

b)a)

Figure 3. Scaling relations. The MBH as a function of bulge dynamical mass (panel a) and bulge stellar mass (panel b). Pseudo-bulges are highlighted as red
open squares. In panel (b), the M/L is from equation (6). See Section 3.2 and Fig. 4 for details on the M/L calibrations.

Figure 4. Mdyn versus L3.6,bul. The black line represents the linear regression of equation (6).

3.1 MBH versus 3.6 µm bulge luminosity

To construct the MBH–L3.6,bul correlation, we compute the bulge
3.6 µm luminosity using the magnitudes obtained with the 2D de-
composition (see Section 2.3 for details) and reported in Table 3. To
derive 3.6 µm luminosities in solar units, we use the 3.6 µm solar

absolute magnitude obtained with a K-band value of 3.3 mag and
a K − [3.6] = 0.05 mag colour correction (Allen 1976, see also
Bessell & Brett 1988; Bell & De Jong 2001). The data for classical
bulges are fitted with the three linear regression methods described
at the beginning of this section. We obtain the following scaling
relation of MBH with 3.6 µm bulge luminosity (see Table 4 for the

C© 2011 The Authors, MNRAS 413, 1479–1494
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

Sani, AM+2010

log(Mvir/M⊙) = (11.04± 0.03) + (1.18± 0.07) log

�
L3.6µm

1011 L⊙,3.6µm

�

σ0 = (0.13± 0.04) dex



Graham et al. (2001) found that MBH is tightly correlated with the 
concentration index of bulge light [ CRe (1/3)= F(Re/3)/F(Re) ]
BH mass also correlates with Sersic index, Σ(r)~exp(r1/n), n Sersic index 
(Graham & Driver 2007)

MBH vs bulge light concentration

Graham et al. (2001)

Given the debate over the slope of theMbh-! relation (Merritt
& Ferrarese 2001b; Tremaine et al. 2002; Novak et al. 2006), it
is of interest to know howmuch the uncertainty in the slope and
intercept of theMbh-n relation may contribute to the uncertainty
in the predicted SMBH masses. From equation (3), if one mea-
sures a bulge to have n ¼ 3 with "n/n ¼ 0:2, then the error in n
contributes 96% of " logMbh. That is, the uncertainty on the slope
and intercept of equation (2) are not substantial contributors to the
error budget on logMbh. If one has a galaxy with n ¼ 1 or 9, and
again "n/n ¼ 0:2, then the combined error from the uncertainty
on the slope and intercept contributes only 14% of the error on
logMbh.

We have additionally used the OLS regression analysis BCES
[logMbhjlog n/3ð Þ] from the code of Akritas & Bershady (1996),
which allows for both measurement errors and intrinsic scatter.
For our sample of N ¼ 27 galaxies, we obtained

logMbh ¼ 2:68 $ 0:40ð Þ log n=3ð Þ þ 7:82 $ 0:07ð Þ; ð4Þ

with # ¼ 0:30þ0:09
&0:07 dex in logMbh. Using an uncertainty of

$log 1:25 or $log 1:1 for the value of log n had no significant
(1 !) affect on either the slope or intercept of the above relation,
which agrees well with that in equation (2).

3.1.1. Symmetrical Regression

To obtain the intrinsic astrophysical relation, themodified ver-
sion of FITEXY that minimizes equation (1) should not be used.
The reason is because it is biased—to produce a low slope—by
the minimization of the intrinsic variance, #, along the y (i.e.,
logMbh) axis. If the minimization is instead performed along the
x (i.e., log n) axis, then the #2 term in the denominator of equa-
tion (1) will be replaced with b2# 2. Making this substitution and
performing the new regression,5 one obtains b ¼ 3:10 $ 0:33,
a ¼ 7:78 $ 0:09, and # ¼ 0:11þ0:04

&0:02 dex in log n.
The average of the above two slopes from themodified FITEXY

routine, (3:10þ 2:69)/2 ¼ 2:90, agrees well with the slope ob-
tained using the bisector linear regression routine BCES from
Akritas & Bershady (1996), which gives

logMbh ¼ 2:85 $ 0:40ð Þ log n=3ð Þ þ 7:80 $ 0:07ð Þ: ð5Þ

This relation is in good agreement with the intrinsic astrophys-
ical relation presented in Graham et al. (2003a).

3.2. A Curved Relation

As noted in Graham et al. (2001, 2003a), we have no a priori
knowledge that theMbh-n relation is linear. For this reason, in those
papers we employed the use of both linear and nonlinear statistics
to measure the correlation strength. Here we go one step further by
fitting a quadratic to the data.
We stress that, from a physical standpoint, we do not know

what the actual form of the relation should be. The quadratic
equation that we adopt is an empirical model. In a Taylor series
expansion it is simply the next-order term. The Mbh-n data may
in fact be described by a double power law, but this would re-
quire the use of four free parameters (a low- and high-mass slope,
and a transition mass and transition Sérsic index). The quadratic
relation has only three parameters and is the adopted model for
explorations of nonlinearity in the Mbh-! data (Wyithe 2006a,
2006b).
In passing we note that there have been claims that theMbh-!

relation may not be linear but may have either negative curvature
(e.g., Granato et al. 2004; Cirasuolo et al. 2005), positive curva-
ture (e.g., Hopkins & Hernquist 2006), or no curvature at even
the 0.75Y1.5 ! level6 (Wyithe 2006b; see also E. Noyola et al.
2007, in preparation) or may curve down at low SMBH masses
and up at high SMBH masses (Sazonov et al. 2005). Given that
the L-! relation is not linear, having a slope of '4 at the bright
end and'2 at the faint end (Tonry 1981; Davies et al. 1983; Held
et al. 1992; DeRijcke et al. 2005;Matković &Guzmán 2005), and
if the Mbh-L relation is linear, then the Mbh-! relation obviously
cannot be linear but must have a positive curvature. Of course, the
Mbh-L relation might not be linear.
We fit the quadratic equation y ¼ aþ bxþ cx2 to the (Mbh, n)

data by minimizing the statistic

$2 ¼
XN

i¼1

yi & a& bxi & cx2i
! "2

"y2i þ 2cxi þ bð Þ2"x2i þ # 2
; ð6Þ

where yi ¼ log (Mbh;i), xi ¼ log (ni/3), and # is the intrinsic var-
iance, which, given our objective of predicting new SMBH

5 We have ignored unknown, but possible, selection boundaries in log n that
could bias such a fit (see, e.g., Lynden-Bell et al. 1988, their Fig. 10).

6 The tighter constraint of 0.75 ! (that is, the factor in front of a quadratic term
is inconsistent with zero at only the 0.75 ! level) comes from using SMBHs with
resolved spheres of influence. Including galaxies with unresolved spheres of
influence and adding single-epoch reverberation mapping masses (uncertain to
factors of 3Y4) weakens the result of a purely linear Mbh-! relation, with the
probability that the second-order term does not equal zero ruled out at the (still
weak) 1Y2 ! level.

Fig. 1.—Correlation between a galaxy’s supermassive black hole mass and the shape parameter (i.e., Sérsic index n) of its dynamically hot component. The Pearson
linear correlation coefficient r is given, as is the Spearman rank-order correlation coefficient rS. (The uncertainties on the data points were not used when computing
these correlation coefficients.) The regression line shown in the left panel was obtained using a modified version (Tremaine et al. 2002) of the routine FITEXY (Press
et al. 1992, their x 15.3); see eq. (2). Consistent results were obtained using the ordinary least-squares [ logMbhjlog (n/3)] linear regression routine from Akritas &
Bershady (1996); see eq. (4). The middle panel shows the!$2 ¼ 1:0 and 2.3 boundaries around the optimal intercept, a ¼ 7:81, and slope, b ¼ 2:69. The projection of
the!$2 ¼ 1:0 ellipse onto the vertical and horizontal axes gives the 1 ! uncertainties "a and "b, respectively. The!$2 ¼ 2:3 ellipse denotes the 1 ! two-dimensional
confidence region. This has been mapped into the right panel and is traced by the two solid curves. The dashed lines in this panel are the (more commonly used)
approximations obtained using a $ "a and b $ "b. The two confidence regions agree well, although the region traced by the dashed lines is, as expected, smaller.
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Graham & Driver (2007)

Kormendy relation (Σe-Re) combined with n-Re  relation (Caon et al. 1993) 
can be used to explain MBH vs C,n correlation.

Sersic index is obviously directly related to other structural parameters of 
the spheroid and, through them, to MBH.
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MBH vs number of GCs

Burkert & Tremaine (2010) presented a correlation between MBH and 
number of Globular Clusters implying MBH ~ total mass in GCs

Snyder et al. (2011) show that there is not a direct “physical” correlation 
between MBH and NGC, but that 
NGC is directly linked to Mstar and σ, and through them, to MBH
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where MV is the magnitude of the spheroidal compo-
nent.

Brodie & Strader (2006) have summarized the progress
that has been made in the quarter-century since the work by
Harris & van den Bergh (1981). It has become clear that star
cluster populations are powerful tracers of galaxy evolution and
that the observed correlations between GC and galaxy proper-
ties provide valuable information about their joint formation.
One of the most comprehensive studies of early-type galaxies
was performed by Peng et al. (2008), who measured specific
frequencies for the GC systems of 100 elliptical and lenticular
galaxies in the Virgo cluster. They find that early-type galaxies
with intermediate luminosities (−22 < MV < −18) typically
have SN ∼ 1.5, while luminous galaxies have SN ∼ 2–5. The
dominant galaxy M87 has an even larger specific frequency
(Racine 1968), estimated by Peng et al. to be SN # 13.

The formation of GCs is not well understood (see, e.g., Brodie
& Strader 2006 for a review). An important clue is that gas-rich
merging galaxies contain large numbers of young massive star
clusters that presumably formed in the merger (Schweizer 1987;
Whitmore & Schweizer 1995). As this population of cluster
ages, it is likely to evolve into a population of “normal” GCs (Fall
& Zhang 2001). Another scenario is the combined formation of
SMBH seeds and GCs in super star-forming clumps of gas-rich
galactic disks at z ∼ 2 (Shapiro et al. 2010; McLaughlin &
Pudritz 1996).

In summary, (1) both the SMBH mass M• and the total number
of GCs NGC are roughly proportional to the total luminosity of
the spheroidal component in early-type galaxies, (2) GCs may
provide the black-hole seeds from which SMBHs grow, and (3)
both the growth of SMBHs and the formation of GCs appear
to be associated with major mergers or global gravitational
instabilities in gas-rich protogalaxies. Given these observations,
it is natural to ask how the properties of the GC population in
early-type galaxies are correlated with the properties of their
associated SMBHs.

In this paper, we show that there is a tight, power-law relation
between the mass of SMBHs and the total number of GCs in
elliptical, lenticular, and early-type spiral galaxies. Remarkably,
this relation appears to have even less scatter than the classic
relation between SMBH mass and the velocity dispersion of the
host galaxy. The relation can be approximately characterized by
the statement that the SMBH mass equals the total mass in GCs.

2. THE BH–GC RELATION

For this analysis, we have selected all elliptical, lenticular,
and early-type spiral galaxies with good estimates of the SMBH
mass M• and the total number of GCs NGC.

Most of the SMBH masses were taken from the recent
compilation by Gültekin et al. (2009), with revised values for
NGC 4486 (M87) and NGC 4649 (M60) from Gebhardt &
Thomas (2009) and Shen & Gebhardt (2010), respectively. We
also include two unpublished SMBH measurements, provided
by Karl Gebhardt: NGC 4472 (J. Shen et al. 2010, in preparation)
and NGC 4594 (Gebhardt et al. 2010, in preparation). Most
of the GC numbers were taken from the ACS Virgo Cluster
Survey (Peng et al. 2008, first choice) or the compilation by
Spitler et al. (2008, second choice). Table 1 summarizes the
data; the table contains entries for the Milky Way, the Sb spiral
M31, and the dwarf elliptical M32, but these are not included
in the fits below. In three cases (NGC 1399, NGC 3379, and
NGC 5128) where there are two good-quality values in the
literature that differ by two standard deviations or more, we

Fornax A

M87

M31

1399

5128

821
3379

33774564
4459

4594

4472

4374
4649

Figure 1. Number of GCs, NGC, is shown as a function of SMBH mass MBH
for the 13 giant elliptical, lenticular, and early-type spiral galaxies in Table 1.
Open circles connected by dotted lines denote the galaxies NGC 1399, NGC
3379, and NGC 5128 for which two estimates of the SMBH mass are given.
The dashed curve shows the fit given by Equation (2). The location of M31 is
also plotted as an open triangle, but this galaxy does not contribute to the fit.
(A color version of this figure is available in the online journal.)

have included both estimates in our fits, each at half-weight.
Note that errors in GC numbers are significantly larger than
Poisson, due to uncertainties in the extrapolation of the GC
luminosity functions, background subtraction, and corrections
of the observed area of the galaxy to the whole system; the last
of these is a particular concern because the radial distribution of
GCs does not always follow the radial distribution of light.

The points in Figure 1 show SMBH mass M• as a function of
GC population NGC. We fit this data to an assumed underlying
relation of the form log M• = α + β log(NGC) (all logs in
this paper are base 10). We determine the best-fit values of α
and β by minimizing χ2 including errors in both observational
parameters, using the methods in Tremaine et al. (2002). There
exists a surprisingly tight correlation (dashed line),

log
M•

M$
= (8.14 ± 0.04) + (1.08 ± 0.04) log

NGC

500
; (2)

the χ2 per degree of freedom is 6.6. For comparison, the M•–σ
relation for the same sample, shown in the upper left panel of
Figure 2, is

log
M•

M$
= (8.36 ± 0.04) + (4.57 ± 0.25) log

σ

200 km s−1 (3)

with χ2 per degree of freedom of 8.5. Thus, in this admittedly
small sample (N = 13), the correlation of SMBH mass with
GC number is actually tighter than the classic correlation with
velocity dispersion.

We have also carried out unweighted fits in which we ignore
the observational errors in dispersion, luminosity, and GC
number and minimize the rms residual ε in the log of the
SMBH mass (weighted by the observational errors in mass).
For the mass-dispersion relation ε = 0.30 dex and for the mass-
luminosity relation ε = 0.38 dex, while for the mass versus GC

Burkert & Tremaine 2010
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Figure 1. Top: observed correlations of NGC and M∗ with velocity dispersion σ for the 32-galaxy sample described in Section 2. Lower left: correlation between NGC
and M∗ at fixed σ : ∆NGC (∆M∗) is the difference between the observed logarithm of NGC (M∗) and the expected value of the logarithm of NGC (M∗) given the linear
relation in the top left (top right) panel. The lines are our regression curves fitted to the data. The dashed black curves are fitted using a χ2 technique accounting for
intrinsic scatter (Tremaine et al. 2002), while the dashed red curves use an alternative maximum-likelihood technique from Akritas & Bershady (1996). There is a clear
positive correlation between ∆NGC and ∆M∗. If the BHFP is the true underlying relation, then this observed residual correlation will lead to a correlation between
NGC and MBH, even at fixed σ and with no other physics linking MBH to the globular cluster systems. Lower right: the observed correlation between NGC and M∗.
(A color version of this figure is available in the online journal.)
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Figure 2. Residual correlation between NGC and MBH at fixed velocity
dispersion σ . The points are data from BT10 and HH11; we follow BT10
where multiple MBH measurements exist by assigning each measurement half-
weight in any fits. Red points correspond to the BT10 sample; their positions
here and in BT10’s Figure 3 differ slightly because we take NGC residuals with
respect to σ instead of bulge luminosity, but the residuals here have roughly the
same slope and span a similar range of ∆NGC as compared with BT10. The eight
points added by the elliptical sample of HH11 reinforce this residual correlation
and expand its range. The dark gray shaded region is the predicted residual
correlation (with associated 1σ uncertainty in lighter shade) assuming that
MBH is determined only by the BHFP, combined with the observed correlation
between NGC and M∗ at fixed σ determined by fitting the data in Figure 1. We
see that the observed residual slope is in good agreement with this expected
slope. Thus, the apparent additional predictive power of NGC for MBH can be
entirely accounted for by the predicted correlation of MBH and the observed
correlation of NGC with the bulge binding energy.
(A color version of this figure is available in the online journal.)

and correspondingly,

αT02 = 1.11 ± 0.36
αBCES = 1.56 ± 0.32.

In Figure 2, we compare this predicted slope with the one
observed in the comparison sample of BT10 and HH11. Again,
we compute the residuals against σ in both NGC and MBH;
note that for consistency, this is slightly different than the
quantities plotted in BT10’s Figure 3 where the NGC residual was
computed against the bulge luminosity, not velocity dispersion.
We plot a region in light gray to highlight the extremes of the
predicted slopes, corresponding to the range bounded by the 1σ
uncertainties in the slope given by our two regression methods.
In darker gray we simply plot the range bounded by our two
slope estimates.

As in Figure 1, we fit the data directly and find that the
observed residual slope between NGC and MBH is

α̂T02 = 0.78 ± 0.24
α̂BCES = 1.33 ± 0.34,

in good agreement with the BHFP predictions above.
The detection of this residual correlation by BT10 quanti-

tatively demonstrates that NGC is a better predictor of MBH
than is σ . Such a comparison can be alternatively phrased as
a reduction in the intrinsic scatter of the correlation. In BT10,
the intrinsic scatter of MBH–σ was found to be ε ∼ 0.3 dex,
while the intrinsic scatter in NGC–MBH is ε ∼ 0.2 dex. The
magnitude of this dispersion can be predicted by combining the
BHFP relation with the observed correlations with NGC. From

4
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MBH-dark matter halo
Ferrarese et al. 2002 find a tight correlation between σ and  the galaxy 
circular velocity Vc measured where rotation curve is flat
Since σ is related to MBH, and Vc is related to MDM (mass of dark matter 
halo), this implies a non-linear relation MBH-MDM (MBH/MDM ~ 10-4 - 10-5)
Recently questioned by Kormendy et al. 2011.
No correlation at all or does it break down at small σ?
In any case, is it a real relation, or a “secondary” one like for n and NGC? 

Ferrarese et al. 2002

the case be made for a bulge-disk conspiracy: the rotation
curve is approximately flat all the way to the innermost
point, !2 kpc (Begeman 1987). In all other cases, the bulge
contribution is insignificant by the time the flat part of the
rotation curve is reached (Broeils 1992; Kent 1987). In other
words, there is no direct evidence in these galaxies of a cou-
pling between bulge and halo. At most, a connection

between the vc-!c relation and the disk-halo conspiracy can
be thought of in the following terms. A rough correlation
exists between maximum rotational velocity and Hubble
type (e.g., Casertano & van Gorkom 1991); coupled with
the correlation between Hubble type and bulge luminosity
and between the latter and the bulge velocity dispersion
(Kormendy & Illingworth 1983), a correlation between vc
and !c ensues. However, as in the case of the MBH-!c rela-
tion, which is ‘‘ expected,’’ given theMBH-LB and the Faber-
Jackson relation, the vc-!c relation is tighter and therefore
more fundamental than any of the correlations mentioned
above.

One last possibility to explore is whether the vc-!c relation
could be nothing but the Tully-Fisher relation in disguise.
Verheijen (2001) finds negligible intrinsic scatter for the K-
band Tully-Fisher relation when the circular velocity in the
flat part of the rotation curve is substituted to the maximum
rotational velocity. The tightness of the relation implies a
fundamental connection between DM halo mass and the
total baryonic mass. The connection with bulge mass (and
hence !c) is, however, not immediate (Norman, Sellwood, &
Hasan 1996). For instance, the bulge-to-disk fraction could
conceivably depend on the detailed form of the halo angular
momentum profile (Bullock et al. 2001) and the details of
the angular momentum exchange between gas clouds during
dissipation (van den Bosch et al. 2002). It should be further
noticed that Verheijen (2001) finds that the Tully-Fisher
relation holds with negligible intrinsic scatter down to
vc ! 80 km s"1, while the vc-!c relation shown in Figure 3
seems to break down below vc ! 150 km s"1.

4. A RELATION BETWEEN SBHs
AND DM HALOS

Not being the result of a dynamical tautology, the near
invariance of !c=vc over 2 orders of magnitude in
RðvcÞ=Rð!cÞ seems to indicate a remarkable uniformity in

Fig. 2.—Residuals from the best fit to all galaxies, with the exclusion of
NGC 598 (Fig. 1, dotted line), plotted as a function ofRðvcÞ=R25.

Fig. 3.—Same as Fig. 1, except that filled circles represent spiral galaxies
withRðvcÞ=R25 > 1:0 and open circles represent the sample of elliptical gal-
axies from Kronawitter et al. (2000). The dotted line is a fit to all spiral gal-
axies with the exception of NGC 598, while the solid line is the fit to all
spirals with !c > 70 km s"1. The latter fit is consistent with the one obtained
for the elliptical galaxies alone (see fits 3 and 4 in Table 2). The dashed line
is a fit to the entire sample of ellipticals plus spirals with !c > 70 km s"1.

Fig. 4.—Ratio between bulge velocity dispersion !c and disk circular
velocity vc plotted against the ratio of the radii at which the two are mea-
sured. Filled circles are galaxies for whichRðvcÞ=R25 > 1:0.
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galaxies satisfy the tight Vcirc–s relation shown by the black filled
circles only if they contain bulges. We conclude that baryons must
matter to black-hole growth. But baryons in a disk are not enough to
allow us to predictM$. Darkmatter by itself is not enough. The galaxy
M101 (Fig. 1, top-left redpoint) has a halo that is similar to those of half
of the tightly correlated galaxies, but that halo did not manufacture a
canonical black hole in the absence of a bulge. This suggests that bulges,
not haloes, coevolve with black holes.
Nevertheless, most of the black circles in Fig. 1 show a correlation

whose scatter is consistent with the error bars. We need to understand
this.
We suggest that the tight correlation of black points in Fig. 1 is a

result of the well-known ‘conspiracy’13,14 between baryons and dark
matter tomake featureless rotation curves with no distinction between
the parts that are dominated by baryonic and non-baryonic matter.
This possibility was considered and dismissed in ref. 6. However, it is a

natural consequence of the observation that baryons make up 17% of
the matter in galaxies18 and that, to make stars, they need to dissipate
inside their haloes until they are self-gravitating. This is sufficient to
engineer that Vcirc be approximately the same for dark matter haloes
and for disks embedded in them19,20. That part of the conspiracy is not
shown by Fig. 1 because, absent a bulge, disks reach Vcirc at large radii
that are not sampled by s measurements of nuclei.
Bulges dissipate more than disks. The consequences are shown in

Supplementary Figs 1 and 2. Supplementary Fig. 1 shows that Vcirc for
the bulge approximately equals Vcirc for the halo in the two highest-
Vcirc galaxies whose points are circled in Fig. 1. Supplementary Fig. 2
shows that the sameapproximate equality holds, given the uncertainties
in rotation-curve decomposition, for all decompositions that we could
find that included a bulge. It holds in just the Vcirc range, 180–260 km
s21, where the black circles in Fig. 1 show a tight correlation. Because a
bulge has Vcirc<

ffiffiffi
2

p
s, a correlation such as that in Fig. 1 is expected

from Supplementary Fig. 2. All galaxies that participate in the tight
correlation in Fig. 1 are included in Supplementary Fig. 2, and all of
them have bulges or pseudobulges. We conclude that the correlation is
nothing more nor less than a restatement of the rotation-curve con-
spiracy for bulges and dark matter. It is a consequence of dark-matter-
mediated galaxy formation. The conceptual leap to a direct causal cor-
relation betweendarkmatter andblackholes is not required by the data.
So far, we have discussed black-hole correlations indirectly using the

assumption that s is a surrogate for black-hole mass. We now check
this assumption and show that it is not valid for most of the black
points that define the tight correlation in Fig. 1. If s is not a measure of
M$ for these galaxies, then this further shows that the correlation is
not a consequence of black hole/dark matter coevolution.
In Fig. 2, we examine directly the correlations betweenM$ and host

galaxy properties for galaxies in which black holes have been detected
dynamically.All plottedparameters are published elsewhere. The galaxy
sample and plotted data are listed in Supplementary Information of the
accompanyingLetter10. The samegalaxies are shown in all panels except
that ellipticals do not appear in Fig. 2c because they do not have disks;
bulgeless galaxies do not appear in Fig. 2a because they do not have
bulges; and some bulgeless galaxies and pseudobulge galaxies withM$
limits do not appear in Fig. 2b because s is outside the range of the plot.
The top panels correlate M$ with the luminosity (Fig. 2a) and

velocity dispersion (Fig. 2b) of the host galaxy bulge. Ellipticals (black)
and classical bulges (red) show the good (Fig. 2a) and better (Fig. 2b)
correlations that we have come to expect.
Figure 2c shows10 that galaxy disks do not correlate withM$. Disk

masses, which are approximately proportional to their K-band
luminosities, cannot be used to predictM$.
Figure 2 also distinguishes classical bulges (red points) from pseudo-

bulges (blue points). Classical bulges are essentially indistinguishable in
structure and parameter correlations from elliptical galaxies (black
points). We believe that both formed by galaxy mergers (see below).
Pseudobulges are high-density, central components in galaxies that
superficially resemble—and often are mistaken for—classical bulges
but that can be recognized because their properties are more disk-like
than those of classical bulges. We now know that this results from fun-
damentally different formationhistories. Complementary tohierarchical
clustering21, a new aspect of our understanding of galaxy formation16 is
that isolated galaxy disks evolve slowly as non-axisymmetries such as
bars redistribute angular momentum. During this process, pseudo-
bulges are grown out of disk material. Bulge–pseudobulge classifica-
tions are listed for all objects in our sample in Supplementary
Information of ref. 10. Figure 2a, b illustrates a conclusion from that
Letter which has consequences here: pseudobulges show essentially no
correlation betweenM$ and s. Baryons do not predictM$ if they are
in a pseudobulge.
If M$ and s do not correlate for pseudobulges, then s is not a

surrogate forM$ in Fig. 1, either. Bulge classifications for the galaxies
shown in Fig. 1 are given in Supplementary Information, and two
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Figure 1 | Outer rotation velocities versus near-central velocity dispersions
of disk galaxies. Data are listed in Supplementary Information. Error bars,
1 s.d. The original black hole/dark matter correlation6 is shown using black
symbols (circled if the galaxy has a classical bulge) except that points have been
omitted if the smeasurement had insufficient velocity resolution. For example,
the bulgeless Scd galaxy IC 342 (now the orange point, after correction) was
previously plotted6 at s5 776 12 km s21, consistent with the black points. But
the measurement25 had low resolution: the instrumental velocity dispersion,
sinstr5 (resolution full-width at half-maximum)/2.35, was 61 km s21, similar
to the value of s measured for IC 342. Low resolution often results in
overestimation of s. The same source lists s5 77 km s21 for the nucleus of
M33, which has s5 216 2 km s21 asmeasured at high resolution26,27. In fact, a
high-resolutionmeasurement of IC 342was available28: at sinstr5 5.5 km s21, s
is observed to be 336 3 km s21 (orange point). We replaced four filled circles
for which better smeasurements are available; three of these are now coloured
points, and the fourth is NGC 3198. We omitted five plus-shaped points for
which s=sinstr. And we added points (colour) for galaxies measured with
sinstr, 10 km s21, that is, high enough resolution to allowmeasurement of the
smallest velocity dispersions seen in galactic nuclei. The line (equation at
bottom; velocities are in units of 200 km s21) is a symmetric least-squares fit29 to
the black filled circles minus NGC 3198. It has x25 0.25. The correlation
coefficient is r5 0.95. This correlation is at least as good as the one betweenM$
and s. The correlation for the plus-shaped points has x25 2.6 and r5 0.77. For
these galaxies, we have only optical rotation curves, which measure Vcirc less
accurately than do H I measurements because they do not reach as far out into
the dark matter halo6. They show a weaker correlation that is not a compelling
argument for coevolution.Weaker still is the correlation for the coloured points
plus NGC 3198: it has x25 15.7 and r5 0.70.
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BH fundamental plane
Correlation of MBH with virial bulge mass (~ Reσ2) suggests that MBH 
might correlate with  combination of  Re, σ
Indeed residuals of MBH-σ (weakly) correlate with Re (Marconi & Hunt 
2003)
Hopkins et al. (20007a,b )propose a “fundamental plane” for MBH found 
both in data and from models (see also Barway & Kembhavi 07, Aller & 
Richstone 07, Feoli & Mancini 2009).

No. 1, 2003 MARCONI & HUNT L23

Fig. 1.—Left: vs. for the galaxies of group 1. The solid lines are obtained with the bisector linear regression algorithm of Akritas & Bershady (1996),M LBH K, bul
while the dashed lines are ordinary least-squares fits. Middle: vs. with the same notation as in the previous panel. Right: Residuals of vs. , inM M M -j RBH bul BH e e

which we use the regression of T02.M -jBH e

TABLE 2
Fit Results ( )log M p a! bXBH

X

Group 1 Galaxies All Galaxies

a b rms a b rms

. . . . . .log L " 10.0B, bul 8.18! 0.08 1.19! 0.12 0.32 8.07! 0.09 1.26! 0.13 0.48

. . . . . .log L " 10.7J, bul 8.26! 0.07 1.14! 0.12 0.33 8.10! 0.10 1.24! 0.15 0.53

. . . . . .log L " 10.8H, bul 8.19! 0.07 1.16! 0.12 0.33 8.04! 0.10 1.25! 0.15 0.52

. . . . . .log L " 10.9K, bul 8.21! 0.07 1.13! 0.12 0.31 8.08! 0.10 1.21! 0.13 0.51
. . . . . . .logM " 10.9bul 8.28! 0.06 0.96! 0.07 0.25 8.12! 0.09 1.06! 0.10 0.49

2MASS images are photometrically calibrated with a typical
accuracy of a few percent. More details can be found in L. K.
Hunt & A. Marconi (2003, in preparation, hereafter Paper II).
We performed a two-dimensional bulge/disk decomposition

of the images using the program GALFIT (Peng et al. 2002),
which is made publicly available by the authors. This code
allows the fitting of several components with different func-
tional shapes (e.g., generalized exponential [Sersic] and simple
exponential laws); the best-fit parameters are determined by
minimizing . More details on GALFIT can be found in Peng2x
et al. (2002). We fitted separately the J, H, and K images. Each
fit was started by fitting a single Sersic component and constant
background. When necessary (e.g., for spiral galaxies), an ad-
ditional component (usually an exponential disk) was added.
In many cases, these initial fits left large residuals, and we thus
increased the number of components (see also Peng et al. 2002).
The fits are described in detail in Paper II. In Table 1, we
present the J, H, and K bulge magnitudes, effective bulge radii
in the J band, and their uncertainties. The J, H, and KRe

magnitudes were corrected for Galactic extinction using the
data of Schlegel, Finkbeiner, & Davis (1998). We used the J
band to determine because the images tend to be flatter, andRe
thus the background is better determined.

4. RESULTS AND DISCUSSION

In Figure 1, we plot, from left to right, versus ,M LBH K, bul
versus , and the residuals of versus (basedM M M -j RBH bul BH e e

on the fit from T02). Only group 1 galaxies are shown. Mbul
is the virial bulge mass given by ; if bulges behave as2kR j /Ge e

isothermal spheres, . However, comparing our virialk p 8/3
estimates of with those of , obtained from dynamicalM Mbul dyn
modeling (Magorrian et al. 1998; Gebhardt et al. 2003), shows
that and are well correlated ( ); settingM M r p 0.88bul dyn

(rather than 8/3) gives an average ratio of unity. There-k p 3
fore, we have used in the above formula. Consideringk p 3
the uncertainties of both mass estimates, the scatter of the ratio

is 0.21 dex. We fitted the data with the bisector linearM /Mbul dyn
regression from Akritas & Bershady (1996) that allows for
uncertainties on both variables and intrinsic dispersion. The
FITEXY routine (Press et al. 1992) used by T02 gives con-
sistent results (see Fig. 1). Fit results of versus the galaxyMBH
properties for group 1 and the combined samples are sum-
marized in Table 2. The intrinsic dispersion of the residuals
(rms) has been estimated with a maximum likelihood method
assuming normally distributed values. Inspection of Figure 1
and Table 2 shows that and correlate well with theL MK, bul bul
BH mass. The correlation between and is equivalentM MBH bul
to that between the radius of the BH sphere of influence RBH
(p ) and .2GM /j RBH e e

4.1. Intrinsic Dispersion of the Correlations

To compare the scatter of for different wave bands,M -LBH bul
we have also analyzed the B-band bulge luminosities for our
sample. The upper limit of the intrinsic dispersion of the

correlations goes from ∼0.5 dex in whenM -L logMBH bul BH
considering all galaxies to ∼0.3 dex when considering only
those of group 1. Hence, for galaxies with reliable andMBH

, the scatter of correlations is ∼0.3 dex, indepen-L M -Lbul BH bul
dently of the spectral band used (B or JHK), comparable to
that of . This scatter would be smaller if the measurementM -jBH e

errors are underestimated. McLure & Dunlop (2002) and Erwin
et al. (2003) reached a similar conclusion using R-band ,L bul
but on smaller samples. The correlation between the R-band
bulge light concentration and has a comparable scatterMBH
(Graham et al. 2001).
Since and have comparable disper-M -L M -LBH B, bul BH NIR, bul

Marconi & Hunt 03 Hopkins+07a,b

observations
simulations



The BH fundamental plane is in practice a 
correlation of BH mass with gravitational 
binding energy (Hopkins et al. 2007, Aller & 
Richstone 2007, Feoli & Mancini 2009)

Virial theorem (K kinetic energy, W 
gravitational binding energy) states

hence

BH fundamental plane
1506 FEOLI & MANCINI Vol. 703

Figure 1. Best-fitting (a) M•–MGσ 2, (b) M•–σ , and (c) M•–MG relations for
the elliptical galaxies (red ellipses), lenticular galaxies (green circles), barred
lenticular galaxies (green barred circles), spiral galaxy (pink spirals), barred
spiral galaxies (blue barred spirals), and dwarf elliptical galaxies (orange round
ellipses) of sample A. The light-red colored area represents the transition area,
in which the elliptical and the spiral galaxies are mixed together (see the text).

in Table 3 and show that the scatter of our relation is better
than the M•–σ and the M•–MG laws even in this extreme case.
Furthermore, the slope of the line of best-fit m = 0.73 ± 0.04 is
the same, inside the errors, as the one of Hopkins et al. (2007)
in Equation (1).

We note also that the slope of the M•–σ law depends on
the errors and on the fitting methods used, more than the other
relations do. While the values in Table 3 are close to the estimates
of Tremaine et al. (2002) and Gultekin et al. (2009b; even if

they have been obtained with a different sample), the values in
Table 2 are closer to the ones obtained by Graham (2008; he
found m = 5.22 ± 0.40 and b = 8.13 ± 0.06) with the same
sample but with the Akritas & Bershadi (1996) method.

A surprising result is shown in Figure 2, where we performed
a log–log plot of the energy stored by the SMBH, Est = M•c

2,
as a function of the bulge kinetic energy of random motions,
both normalized by the rest energy of the Sun, M!c2. Given the
line of best fit (solid line) and a sort of border line (dashed line)
that divides the diagram in two parts, it is evident that:

1. almost all the elliptical galaxies (except NGC3377) are in
the higher part of the diagram (over the dashed line);

2. the lenticular galaxies are located in the middle-upper part
of the diagram;

3. the barred lenticular galaxies are located in the middle part
of the diagram (but under the dashed line);

4. all the spirals are in the middle-lower and in the lower parts
of the diagram (under the dashed line); and

5. in the lower part of the diagram we find also two dwarf
elliptical galaxies: NGC221 and NGC4486A.

In analogy with the H–R diagram for stars, each mor-
phological type of galaxy occupies a different area in the
M•–(MGσ 2)/c2 plane. This effect is in part due to the well
known fact that M• and MG (also σ , even if with a lot of ex-
ceptions) generally increase with the morphological type, but it
is remarkable and not granted that they simultaneously increase
just in the right way to produce the effect and a law with a min-
imal scatter. Compared with the other two relations, this clear
trend can be lightly recognized also in Figure 1(c), but it is not
clear in Figure 1(b). For example, the ellipticals in Figure 1(a)
are more separated from the spirals with respect to Figures 1(b)
or (c). This can be quantified calculating the width of the tran-
sition area (light red colored), in which the elliptical and the
spiral galaxies are mixed together, with respect to the entire
area (light blue colored) occupied by all galaxies (we exclude
the dwarf ellipticals). In Figure 1(a), the red zone is only the
19% of blue area, whereas it is 33% and 21% in Figure 1(b) and
(c), respectively.

The general trend observed in Figure 2 is respected in Figure 3
for the galaxies of sample B, even if two lenticular galaxies
appear in the lower part of the diagram and a spiral galaxy
in the upper part. The latter is the famous Sombrero galaxy
(NGC4594), one of the largest galaxies in the nearby Virgo
Cluster, classified as a lenticular by Magorrian et al. (1998). It
is well known that it has a bright nucleus and an unusually large
classical bulge, testified by a relatively large number of globular
clusters. We know that the classical bulges are believed to be
generated by mergers and are common in early-type galaxies but
become progressively rare toward later types. They share some
structural, dynamical, and population properties with the lower-
luminosity ellipticals (Freeman 2007). Actually, NGC4594 is
surrounded by a halo of stars, dust, and gas that indicate it
may actually be described as an elliptical galaxy that contains
a more robust interior configuration. Therefore, its presence in
the upper part of the diagram is not so improper. Later type
galaxies like the Milky Way mostly have small boxy bulges
and are all in the lower part of the diagram. On the other hand,
both a classical bulge and an inner boxy bulge are present in
NGC224 (Andromeda galaxy, M31; Athanassoula & Beaton
2006; Beaton et al. 2007), which is located just in the middle
region.

Both in Figures 2 and 3, the elliptical galaxies are all clustered
very near the line of best fit. Conversely, the galaxies of the

Feoli & Mancini 2009

MBH ∼ (Mvir σ
2)0.7−0.8

W + 2K = 0

|W | = 2K = Mσ2 ∼ Mvirσ
2 ∝ Reσ
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BH fundamental plane?
Graham 08 shows 

Barred galaxies are systematically offset from MBH-σ relation (but not 
from MBH-L)
the need of FP is driven by “barred” galaxies. The bar affects σ and a 
combination of σ, Re gives a tighter relation.

Hu 08 notices the offset nature of “pseudobulges” (from mostly barred 
galaxies) in MBH-σ relation

The barless Mbh-σ relation 15

Fig. 5.— Mbh-σ diagram for 40 galaxies (see section 4.4). The 11 barred galaxies are denoted with a cross.

Fig. 6.— Panel a) Residuals about the Mbh-σ relation constructed using the 29 non-barred galaxies (see section 4.4). The residual offset
of the ten barred galaxies that have Re values are denoted with a cross. Panel b) Residuals about the Mbh-σ relation constructed using
the 19 elliptical galaxies.

Graham 08

hope of accounting for barred galaxies, because such a plane will
introduce a bias to the nonbarred galaxies.

5. THE !-L RELATION AND SAMPLE BIAS

There has been some concern recently that the Mbh-! and/or
Mbh-L relations may be biased, and that they are not consistent
with each other. Lauer et al. (2007), Bernardi et al. (2007), and
Graham (2007, his Appendix A) have reported a slight difference
in the !-L relation between the local sample of galaxies with
direct SMBH masses and the greater population. If correct, this
implies that either theMbh-! or theMbh-L relationmay be biased.
Given the offset nature of some of the barred galaxies in theMbh-!
diagram (offset in the sense that they have overly large velocity
dispersions for their SMBH masses), it is apposite to explore
whether the barred galaxies may be responsible for the allegedly
biased nature of these local inactive galaxy samples.

TheGroup 1 and 2 galaxy data fromMH03 are used here, along
with the updates noted in Table 2. The seven barred galaxies from
the ‘‘Group 1’’ and ‘‘Group 2’’ galaxies of MH03 are excluded, and
the K-band magnitudes have been converted to the Rc band using
Rc ! K ¼ 2:6 (Buzzoni 2005). An uncertainty of 0.3mag and 5%
is assigned to the magnitudes and velocity dispersions, respec-

tively. Applying the regression analysis scheme from Tremaine
et al. (2002; see also Novak et al. 2006) to minimize the scatter in
the log ! direction, the optimal !-L relation is

log ! ¼ 2:23 # 0:03! 0:092þ0:018
!0:012

! "
MR þ 21ð Þ; ð13Þ

which is shown in Figure 7. The parameter uncertainties have
been estimated from aMonte Carlo bootstrap analysis. Although
MH03 note that theMK value forM31may be in error, excluding
it from the regression has no effect on equation (13). However,
the extreme outlying point NGC 4342, the smallest and faintest
spheroid from MH03’s sample after M32, is excluded from this
regression.
The reason for constructing an Rc-band relation was to allow

a comparison with the result from Tundo et al. (2007, their
eq. [4]), which is a SDSS r 0-band !-L relation for early-type SDSS
galaxies, the majority of which presumably do not have bars.
Using r 0 ! Rc ¼ 0:24 (Fukugita et al. 1995), Tundo et al.’s
(2007) expression is such that log ! ¼ 0:27! 0:092MRc

¼ 2:20!
0:092(MRc

þ 21), which is in remarkable agreement with equa-
tion (13). Therefore, it is not yet established that the local sample
of galaxies with direct SMBH mass measurements is biased.

6. Mbh-! VERSUS Mbh-L

Given that the local (predominantly inactive) sample of gal-
axies with direct SMBH mass measurements appears to be un-
biased with respect to the greater population, it is appropriate to

TABLE 4

SMBH Mass-Spheroid Relations

Sample Relation

!
(dex)

! 0

(dex)

Mbh-!

40 galaxies ................................... 8:13 # 0:06þ (3:92 # 0:27) log (!/200) 0.38 0.35

29 nonbarred ................................ 8:26 # 0:06þ (3:67 # 0:19) log (!/200) 0.30 0.25
19 elliptical .................................. 8:25 # 0:05þ (3:68 # 0:25) log (!/200) 0.24 0.18

Mbh-!-Re

40 galaxies ................................... 8:19 # 0:05þ (3:23 # 0:28) log (!/200)þ (0:43 # 0:11)½ log (Re/3)( 0.30 0.28

29 nonbarred ................................ 8:26 # 0:05þ (3:29 # 0:26) log (!/200)þ (0:29 # 0:11)½ log (Re/3)( 0.25 0.24

19 elliptical .................................. 8:23 # 0:04þ (3:32 # 0:36) log (!/200)þ (0:21 # 0:15)½ log (Re/3)( 0.22 0.18

Note.—The total scatter! is given rather than the (smaller) internal/intrinsic scatter, as the latter quantity depends on the measurements
errors that one assigns. The final column shows the total scatter ! 0 after removing just two data points (Cygnus A and NGC 3998).

Fig. 5.—Mbh-! diagram for 40 galaxies (see x 4.4). The 11 barred galaxies are
denoted with a cross.

Fig. 6.—(a) Residuals about the Mbh-! relation constructed using the 29
nonbarred galaxies (see x 4.4). The residual offset of the ten barred galaxies that
have Re values are denoted with a cross. (b) Residuals about the Mbh-! relation
constructed using the 19 elliptical galaxies.
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hope of accounting for barred galaxies, because such a plane will
introduce a bias to the nonbarred galaxies.

5. THE !-L RELATION AND SAMPLE BIAS

There has been some concern recently that the Mbh-! and/or
Mbh-L relations may be biased, and that they are not consistent
with each other. Lauer et al. (2007), Bernardi et al. (2007), and
Graham (2007, his Appendix A) have reported a slight difference
in the !-L relation between the local sample of galaxies with
direct SMBH masses and the greater population. If correct, this
implies that either theMbh-! or theMbh-L relationmay be biased.
Given the offset nature of some of the barred galaxies in theMbh-!
diagram (offset in the sense that they have overly large velocity
dispersions for their SMBH masses), it is apposite to explore
whether the barred galaxies may be responsible for the allegedly
biased nature of these local inactive galaxy samples.

TheGroup 1 and 2 galaxy data fromMH03 are used here, along
with the updates noted in Table 2. The seven barred galaxies from
the ‘‘Group 1’’ and ‘‘Group 2’’ galaxies of MH03 are excluded, and
the K-band magnitudes have been converted to the Rc band using
Rc ! K ¼ 2:6 (Buzzoni 2005). An uncertainty of 0.3mag and 5%
is assigned to the magnitudes and velocity dispersions, respec-

tively. Applying the regression analysis scheme from Tremaine
et al. (2002; see also Novak et al. 2006) to minimize the scatter in
the log ! direction, the optimal !-L relation is

log ! ¼ 2:23 # 0:03! 0:092þ0:018
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which is shown in Figure 7. The parameter uncertainties have
been estimated from aMonte Carlo bootstrap analysis. Although
MH03 note that theMK value forM31may be in error, excluding
it from the regression has no effect on equation (13). However,
the extreme outlying point NGC 4342, the smallest and faintest
spheroid from MH03’s sample after M32, is excluded from this
regression.
The reason for constructing an Rc-band relation was to allow

a comparison with the result from Tundo et al. (2007, their
eq. [4]), which is a SDSS r 0-band !-L relation for early-type SDSS
galaxies, the majority of which presumably do not have bars.
Using r 0 ! Rc ¼ 0:24 (Fukugita et al. 1995), Tundo et al.’s
(2007) expression is such that log ! ¼ 0:27! 0:092MRc

¼ 2:20!
0:092(MRc

þ 21), which is in remarkable agreement with equa-
tion (13). Therefore, it is not yet established that the local sample
of galaxies with direct SMBH mass measurements is biased.

6. Mbh-! VERSUS Mbh-L

Given that the local (predominantly inactive) sample of gal-
axies with direct SMBH mass measurements appears to be un-
biased with respect to the greater population, it is appropriate to

TABLE 4

SMBH Mass-Spheroid Relations

Sample Relation

!
(dex)

! 0

(dex)

Mbh-!

40 galaxies ................................... 8:13 # 0:06þ (3:92 # 0:27) log (!/200) 0.38 0.35

29 nonbarred ................................ 8:26 # 0:06þ (3:67 # 0:19) log (!/200) 0.30 0.25
19 elliptical .................................. 8:25 # 0:05þ (3:68 # 0:25) log (!/200) 0.24 0.18

Mbh-!-Re

40 galaxies ................................... 8:19 # 0:05þ (3:23 # 0:28) log (!/200)þ (0:43 # 0:11)½ log (Re/3)( 0.30 0.28

29 nonbarred ................................ 8:26 # 0:05þ (3:29 # 0:26) log (!/200)þ (0:29 # 0:11)½ log (Re/3)( 0.25 0.24

19 elliptical .................................. 8:23 # 0:04þ (3:32 # 0:36) log (!/200)þ (0:21 # 0:15)½ log (Re/3)( 0.22 0.18

Note.—The total scatter! is given rather than the (smaller) internal/intrinsic scatter, as the latter quantity depends on the measurements
errors that one assigns. The final column shows the total scatter ! 0 after removing just two data points (Cygnus A and NGC 3998).

Fig. 5.—Mbh-! diagram for 40 galaxies (see x 4.4). The 11 barred galaxies are
denoted with a cross.

Fig. 6.—(a) Residuals about the Mbh-! relation constructed using the 29
nonbarred galaxies (see x 4.4). The residual offset of the ten barred galaxies that
have Re values are denoted with a cross. (b) Residuals about the Mbh-! relation
constructed using the 19 elliptical galaxies.
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Pseudobulges
A pseudobulge is a bulge with disk-like properties and therefore is different 
from a “classical” bulge (see review by Kormendy & Kennicutt 2004)

has a flatter, more disk-like shape than a classical bulge
is mostly rotation supported (i.e. Vrot/σ larger than in bulges)
is deviant in L-σ (Faber-Jackson) relation for having small σ
can show spiral structure or nuclear bars (within the bulge part of 
profile)
nearly exponential surface brightness profiles (e.g. n < 2)
has star formation and younger stellar populations than classical 
bulges

Pseudobulges resides mostly in barred and oval galaxies 
(pseudobulges ← → barred galaxies)
Classical bulges are believed to be the result of the merger driven galaxy 
formation process, same structural properties as elliptical galaxies
Pseudobulges are believed to be the result of secular processes in the 
disk driven by non-axisymmetries in the potential: a bar can build a 
concentration of gas and stars in the center of a galaxy which then 
becomes a pseudobulge 



Pseudobulges
Accurate MBH measurements 
from H2O masers are offset 
w.r.t. relation for Elliptical 
galaxies (Greene et al. 2010)

At least 7 out of 9 masers 
galaxies have pseudobulges.

Does this really indicate a 
different relation for 
pseudobulges, or a different 
MBH-σ relation in general?

36 GREENE ET AL. Vol. 721

Figure 8. Relation between BH mass and bulge velocity dispersion for the maser galaxies presented here (open circles) and those from the literature (gray stars).
IC 2560 is indicated with a cross and the BH mass error bar is heuristic only. For reference, we show the MBH–σ∗ relation of elliptical galaxies from Gültekin et al.
(2009, red dashed line). The maser galaxies trace a population of low-mass systems whose BHs lie below the MBH–σ∗ relation defined by elliptical galaxies. The
largest outlier galaxies are (from highest to lowest MBH) NGC 2960, NGC 6323, and NGC 2273.

Sérsic index, see Section 5.1). These authors also show that the
average B/T of pseudobulges (0.16) is lower than that of clas-
sical bulges (0.4) with a large spread. Gadotti (2009), on the
other hand, advocates use of the Kormendy (1977) relation as a
discriminator, since pseudobulges tend to have lower central sur-
face brightnesses at a fixed radius (see also Carollo 1999; Fisher
& Drory 2008). Finally, while classical bulges are typified by
old stellar populations, pseudobulges tend to have ongoing star
formation (e.g., Kormendy & Kennicutt 2004; Drory & Fisher
2007; Fisher et al. 2009; Gadotti 2009). Since deriving robust
velocity measurements is beyond the scope of this paper, and
in the absence of more robust structural information, we rely
on morphology and stellar population properties at the present
time.

The nearest, well-studied targets in our sample (NGC 4388,
and NGC 2273) probably contain pseudobulges. In the case of
NGC 2273, this classification is based on both the young stellar
populations and the rings and nuclear disk. NGC 4388 is less
certain, but there is clear evidence for recent star formation and
dust. We suspect that NGC 6264 contains a pseudobulge, given
its morphological similarities with NGC 2273 (namely the outer
ring and inner bar) and the evidence for young stars. The same
goes for NGC 3393 and IC 2560, which each contain an outer
ring, a bar, and an inner ring. On the other hand, NGC 1194,
with both evolved stellar populations and a large bulge, probably
contains a classical bulge. NGC 2960 has some of the clearest
evidence for ongoing star formation, and so we tentatively put
it into the pseudobulge category. Finally, we remain agnostic

about NGC 6323, which is one of the most distant targets. Thus,
of the nine targets we consider, at least seven likely contain
pseudobulges.

6. SCALING BETWEEN MBH AND σ∗

In Figure 8, we present the location of the megamaser galaxies
in the MBH–σ∗ plane. The maser galaxies do not follow the
extrapolation of the MBH–σ∗ relation defined by the elliptical
galaxies. Instead, they scatter towards smaller BH masses at
a given velocity dispersion. Quantitatively, taking ∆MBH ≡
log(MBH) − log[M(σ∗)], where log[M(σ∗)] is the expected MBH
given σ∗, we find 〈∆MBH〉 = 0.24 ± 0.10 dex. There are many
hints in the literature that the MBH–σ∗ relation does not extend
to low-mass and late-type galaxies in a straightforward manner
(e.g., Hu 2008; Greene et al. 2008; Gadotti & Kauffmann
2009). However, the precision BH masses afforded by the maser
galaxies make a much stronger case. The MBH–σ∗ relation is
not universal. Neither the shape nor the scatter of the elliptical
galaxy MBH–σ∗ relation provides a good description of the
maser galaxies in this plane.

We now add the maser galaxies to the larger sample of local
galaxies with dynamical BH masses to show that indeed a single,
low-scatter power-law does not provide an adequate description
of all galaxies in the MBH–σ∗ plane. For convenience and to
facilitate comparison with previous work, we assume a power
law for all fits, although that form may not provide the best
description of the sample as a whole.

Greene et al. 2010



Pseudobulges
“Secure” correlations are between MBH and 
structural parameters of ellipticals and classical 
bulges

There is no correlation with disks 
(e.g. Kormendy et al. 2011)

Barred galaxies and pseudobulges appear 
deviant from MBH-galaxy relations 

it is very likely that a barred galaxy hosts a 
pseudobulge, likely same phenomenon

Do pseudobulges or barred galaxies define a 
different correlation or no correlation at all?

offset correlation with larger scatter (Hu 2008)

no correlation at all (Kormendy +2011)

What is the origin of the offset nature?

different BH growth?

dynamical effects of bar seen as larger σ?
Kormendy +2011 range to conclude that we see no correlation at all. The cumulative

amount of black-hole growth is not extremely different in classical
bulges and pseudobulges, but there is no sign in the correlations that
black-hole feeding has affected the pseudobulges.
The second andmore compelling black hole/host galaxy correlation

is the one between M$ and the velocity dispersion, s, of the stars at
radii where they do not feel the black hole gravitationally2–5. Here s is
averaged inside the ‘effective radius’, re, that contains half of the bulge
light. Figure 2 shows this correlation.
As is well known, ellipticals and classical bulges share the same tight

correlation. But as in Fig. 1, pseudobulges at best show a much larger
scatter (Fig. 2a). Without the guidance of the red and black points
(Fig. 2b), they show essentially no correlation. Larger samples that
reach smaller values of M$ may show a weak relationship16–20. But
we conclude that classical bulges and pseudobulges show very different
correlations with M$. Those for classical bulges are tight enough to
suggest coevolution. Whether pseudobulges correlate with M$ with
large scatter or not at all, the weakness of any correlation (r520.08
here) makes no compelling case that pseudobulges and black holes
coevolve, beyond the obvious expectation that it is easier for bigger
black holes and bigger pseudobulges to grow in bigger galaxies that
contain more fuel.
From the point of view of galaxy formation by hierarchical cluster-

ing, pseudobulge galaxies are already pure-disk galaxies12. Even more
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Figure 1 | Correlations of dynamicallymeasured black-holemasses with the
luminosities of different parts of their host galaxies. HereMK is the K-band
(2.2-mm) absolute magnitude of the disk component with bulge light removed
(a), of the bulge with disk light removed (b) and of the pseudobulge with disk
light removed (c). All plotted data are published elsewhere; parameters and
sources are discussed in Supplementary Information, and those for disk galaxies
are tabulated there. Elliptical galaxies are plotted in black, classical bulges are
plotted in red and pseudobulges are plotted in dark blue. One galaxy with a
dominant pseudobulge but with a possible small classical bulge (NGC 2787) is
plotted with a blue symbol that has a red centre. In least-squares fits, it is
included with the pseudobulges. Error bars, 1 s.d. In b, the red and black points
show a good correlation betweenM$ and bulge luminosity: a symmetric, least-
squares fit4 of a straight line has x25 12.1 per degree of freedom and a Pearson
correlation coefficient of r520.82. (All x2 values quoted in this paper are per
degree of freedom.) In contrast, in a the red and blue points together confirm a
previous result1 that black holes do not correlate with disks: x25 81 and
r5 0.41.Green points are for galaxies that containneither a classical bulge nor a
pseudobulge but only a nuclear star cluster, that is, pure-disk galaxies. They are
not included in the above fit, but they strengthen our conclusion. Similarly, in
c the blue points for pseudobulges showno correlation: x25 63 and r5 0.27. In
all panels, galaxies that have onlyM$ limits are plottedwith open symbols; they
were chosen to increase our dynamic range. They too support our conclusions.
This figure uses K-band magnitudes to minimize effects of star formation and
internal absorption, but in Supplementary Information we show that Fig. 1
looks essentially the same for V-band (0.55-mm) magnitudes.
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Figure 2 | Correlation of dynamically measured black-hole masses with the
velocity dispersions of their host galaxies. Black points are for elliptical
galaxies, red points are for classical bulges, blue points are for pseudobulges and
the green point is for a nuclear star cluster. Data sources are given in
Supplementary Information. Error bars, 1 s.d. The red and black points show
the well knownM$–s correlation2–5: x25 5.0 per degree of freedom and
r5 0.89. Reducing x2 to 1.0 implies that the intrinsic scatter in log(M$/M[) at
fixed s is 0.26, consistent with previous derivations4,5. This is the tightest
correlation between black holes and host galaxy properties and the one that
most motivates the idea that black holes and bulges coevolve. In contrast, the
blue points for pseudobulges show no correlation: x25 10.4 and r520.08.
This extends suggestions7–9 that theM$–s relation for pseudobulges is
different from that for classical bulges and elliptical galaxies.
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A much needed summary ...
We have many correlations with spheroid (bulge) structural parameters

MBH-σ
MBH-L (Mstar)

MBH-Mdyn

MBH-n

MBH-NGC

MBH-MDM

MBH “fundamental plane”: MBH ~ σα Rβ

There might be different correlations for bulges and pseudobulges

MBH does not correlate with disk properties

Is there a fundamental relation?

Are they reliable?

What is the physical origin of these correlations?
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Is there a fundamental relation?
MBH-σ

MBH-L (Mstar)

MBH-Mdyn

MBH-n        likely indirect relation

MBH-NGC     likely indirect relation

MBH-MDM    likely indirect relation

MBH “fundamental plane”: MBH ~ σα Rβ

There might be different correlations for bulges and pseudobulges

focus on elliptical galaxies and classical bulges only ...

MBH does not correlate with disk properties

forget about disks ...
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Are these relations independent?
Assume the basic correlation is  MBH~Mbulge 

Combine with galaxy scaling relations:

MBH~Lbulge
1.1 consistent with MBH~Mbulge if (M/L)bulge~Lbulge

0.1 (consistent 
with fundamental plane)

Faber-Jackson L~σ4 implies MBH~(σ4)1.1 ~ σ4.4

All MBH-galaxy correlations can be explained as the result of a fundamental 
relation (e.g. MBH~Mbulge) combined with galaxy scaling relations.

Big Black Holes are in big galaxies!

This argument is too simple, does not take into account intrinsic scatters 
but indicate that one must take into account the intrinsic relations among 
the various parameters (eg. Fundamental Plane of elliptical galaxies).
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Recall the RBH=Δθ for BH detection, then maximum distance at which a BH 
can be detected is

Observational biases
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Recall the RBH=Δθ for BH detection, then maximum distance at which a BH 
can be detected is

Observational biases
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Recall the RBH=Δθ for BH detection, then maximum distance at which a BH 
can be detected is

Observational biases

D = 2.5 Mpc

Δθ=0.1′′ (HST)

D = 22Mpc
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Recall the RBH=Δθ for BH detection, then maximum distance at which a BH 
can be detected is

Observational biases
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D = 250 Mpc

Recall the RBH=Δθ for BH detection, then maximum distance at which a BH 
can be detected is

Observational biases
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D = 250 Mpc

Recall the RBH=Δθ for BH detection, then maximum distance at which a BH 
can be detected is

Observational biases

D = 25 Mpc

D = 2.5 Mpc

Δθ=0.1′′ (HST)

D = 22Mpc

�
MBH

108 M⊙

� �
σ�

200 km/s

�−2 �
∆θ

0.1��

�−1

NO detection areas on MBH-σ 
diagram for given Δθ, D:

Direct MBH measures are 
limited to the local 
universe (D~250 Mpc)

There are definitely no 
BHs above the correlation 
(big BHs in small galaxies)

The area below the 
correlation is ‘biased’ and 
cannot be explored (small 
BHs in big galaxies?)



An upper envelope?
MBH-σ an “upper envelope”? 

Batcheldor (2010):

Take all galaxies with σ 
from Leda database and 
assign them random MBH 
within 0-MBH(σ)

cut away those objects 
for which RBH < 0.1” 
(max spatial resolution 
with HST)

Observed MBH-σ with 
correct slope and scatter 
is reproduced!

We are missing small BHs in large galaxies (if they exist).

MBH-σ might be an upper envelope!

However analysis by Gultekin et al. 2011 suggests this is not possible (at 
least in Early types) because we have too many detections already ...

Batcheldor 2010



Problems and open issues 
(beyond those on MBH):

64 galaxies with MBH 

(Graham+2010)
difficult to assess the 
reliability and accuracy of 
all points;
few points at low/high 
mass ends

#9 106 < MBH < 107 M⊙

#7 109 < MBH < 5 109 M⊙ 
mostly E/S0, few spirals

#48 E+S0
#16 Spirals

is there really a BH fundamental plane? 
do all galaxies follow the same correlation? 
are there small BHs in massive galaxies (e.g. MBH-galaxy relations an 
upper envelope)?

Problems and open issues
Graham+2010

Small BHs 
in big bulges here!



How does the BH know about its host galaxy and galaxy about its BH?

What is the physical origin?

MBH � 10−3Msph

Observed correlation:

Msph � 5
σ2

�Rsph

G

Spheroid virial mass:

RBH =
GMBH

σ2
�

Radius of BH sphere of gravitational influence: RBH =
GMBH

σ2
�

MBH � 10−3Msph Msph � 5
σ2

�Rsph

G



How does the BH know about its host galaxy and galaxy about its BH?

What is the physical origin?

MBH � 10−3Msph

Observed correlation:

Msph � 5
σ2

�Rsph

G

Spheroid virial mass:

RBH =
GMBH

σ2
�

Radius of BH sphere of gravitational influence: RBH =
GMBH

σ2
�

MBH � 10−3Msph Msph � 5
σ2

�Rsph

G

RBH � 5× 10−3Rsph

VBH � 1.3× 10−7Vsph

The volume under the BH influence is only ~10-7 of the total volume. 

No gravitational “exchange” of information!

VBH � 1.3× 10−7Vsph

RBH =
GMBH

σ2
�

� 5× 10−3Rsph



BH-galaxy coevolution

L = εṀaccc
2

ṀBH = (1− ε)Ṁacc

Egrow =
ε

1− ε
MBHc2

If BH grown by accretion, the 
energy released during growth is  

Egrav �Msphσ2
�

The gravitational binding energy 
of the virialized spheroid is

L = εṀaccc
2

ṀBH = (1− ε)Ṁacc

Egrow =
ε
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MBHc2 Egrav �Msphσ2
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2
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Energy released by accreting BH (i.e. AGN) can affect galaxy structure and 
can unbind, eg, gas in the galaxy.

AGN feedback can let the galaxy know about the BH!

By regulating the feeding to the BH the galaxy can let the BH know about it!

Egrav �Msphσ2
�

The gravitational binding energy 
of the virialized spheroid is

L = εṀaccc
2

ṀBH = (1− ε)Ṁacc
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Assume AGN emit (close) to the Eddington ratio and that there is a 
radiation driven outflow from the AGN: can explain MBH-σ
Two relevant cases for 

              momentum driven outflow which sweeps ISM in a shell. This 
shell recollapses unless MBH has reached critical value

               energy driven outflow which sweeps ISM gas in a shell; 
imposing expansion work equal to E injection rate (Silk & Rees 1998)

Slope and normalization different in the two cases
No free parameters, the energy driven case does not seem to appear in 
nature (bubble blown in energy driven case should break up for  
Rayleigh-Taylor instability due to large density contrast in shock)

The need for AGN feedback (eg King 2010)

MBH =
fgσT

πmpG2
σ4 = 3.7× 108 M⊙

� σ

200 km

�4

MBH =
fgσT

πmpG2c
σ5 = 2.4× 105 M⊙

� σ

200 km

�5

ṁ = Ṁ/ṀEdd

ṁ ∼ 1

ṁ � 1

too small!

~OK



A. Marconi Beijing International Summer School 2011

The need for AGN feedback
AGN feedback (i.e. BH growth) can affect galaxy growth and explain MBH-
galaxy relation →Cedric’s lectures

But AGN feedback is also needed to explain observed galaxy properties 
(e.g. apparent anti-hierarchical behaviour of galaxy evolution, red colors of 
ellipticals, steepness of optical luminosity function).

AGN phases are fundamental in the evolution of galaxies.14 Croton et al.

Figure 8. Galaxy luminosity functions in the K (left) and bJ (right) photometric bands, plotted with and without ‘radio mode’ feedback
(solid and long dashed lines respectively – see Section 3.4). Symbols indicate observational results as listed in each panel. As can be seen,
the inclusion of AGN heating produces a good fit to the data in both colours. Without this heating source our model overpredicts the
luminosities of massive galaxies by about two magnitudes and fails to reproduce the sharp bright end cut-offs in the observed luminosity
functions.

stars formed. These metals are produced primarily in the su-
pernovae which terminate the evolution of short-lived, mas-
sive stars. In our model we deposit them directly into the
cold gas in the disk of the galaxy. (An alternative would
clearly be to add some fraction of the metals directly to
the hot halo. Limited experiments suggest that this makes
little difference to our main results.) We also assume that
a fraction R of the mass of newly formed stars is recycled
immediately into the cold gas in the disk, the so called ‘in-
stantaneous recycling approximation’ (see Cole et al. 2000).
For full details on metal enrichment and exchange processes
in our model see De Lucia et al. (2004). In the bottom panel
of Fig. 6 we show the metallicity of cold disk gas for model
Sb/c galaxies (selected, as before, by bulge-to-total luminos-
ity, as described in Section 3.5) as a function of total stellar
mass. For comparison, we show the result of Tremonti et al.
(2004) for mean HII region abundances in SDSS galaxies.

4 RESULTS

In this section we examine how the suppression of cooling
flows in massive systems affects galaxy properties. As we will
show, the effects are only important for high mass galaxies.
Throughout our analysis we use the galaxy formation model
outlined in the previous sections with the parameter choices
of Table 1 except where explicitly noted.

4.1 The suppression of cooling flows

We begin with Fig. 7, which shows how our ‘radio mode’
heating model modifies gas condensation. We compare mean
condensation rates with and without the central AGN heat-
ing source as a function of halo virial velocity (solid and
dashed lines respectively). Recall that virial velocity pro-
vides a measure of the equilibrium temperature of the sys-
tem through Tvir ∝ V 2

vir, as indicated by the scale on the top
axis. The four panels show the behaviour at four redshifts
between six and the present day. The vertical dotted line in
each panel marks haloes for which rcool = Rvir, the transi-
tion between systems that form static hot haloes and those
where infalling gas cools rapidly onto the central galaxy disk
(see section 3.2 and Fig. 2). This transition moves to haloes
of lower temperature with time, suggesting a ‘down-sizing’ of
the characteristic mass of actively star-forming galaxies. At
lower Vvir gas continues to cool rapidly, while at higher Vvir

new fuel for star formation must come from cooling flows
which are affected by ‘radio mode’ heating.

The effect of ‘radio mode’ feedback is clearly substan-
tial. Suppression of condensation becomes increasingly effec-
tive with increasing virial temperature and decreasing red-
shift. The effects are large for haloes with Vvir

>
∼ 150 kms−1

(Tvir
>
∼ 106K) at z <

∼ 3. Condensation stops almost com-
pletely between z = 1 and the present in haloes with
Vvir > 300 km s−1 (Tvir > 3 × 106K). Such systems corre-
spond to the haloes of groups and clusters which are typ-
ically observed to host massive elliptical or cD galaxies at
their centres. Our scheme thus produces results which are
qualitatively similar to the ad hoc suppression of cooling

Croton +06

No AGN 
feedback!
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The ultimate goal...

Several models can 
explain MBH-galaxy 
relations with various 
“flavours” of AGN 
feedback on the host 
galaxy.

Silk & Rees 98, Kauffman & 
Haehnelt 00, Cavaliere & 
Vittorini 00, Granato+ 04, 06, 
Murray +04, Di Matteo+05, 
Cattaneo+ 05, Miralda-
Escudè & Kollmeier 05, 
Monaco & Fontanot 05, 
Croton +06, Hopkins +06, 
Malbon +06, Marulli +08 
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The ultimate goal...
Redshift evolution of MBH-galaxy relations 

can constraint BH growth and galaxy 
evolutionary models.

Fundamental to measure MBH at ALL redshifts!

Hopkins +07

Dots: “ observations”
Lines: models 

Several models can 
explain MBH-galaxy 
relations with various 
“flavours” of AGN 
feedback on the host 
galaxy.

Silk & Rees 98, Kauffman & 
Haehnelt 00, Cavaliere & 
Vittorini 00, Granato+ 04, 06, 
Murray +04, Di Matteo+05, 
Cattaneo+ 05, Miralda-
Escudè & Kollmeier 05, 
Monaco & Fontanot 05, 
Croton +06, Hopkins +06, 
Malbon +06, Marulli +08 
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Do we really need feedback?
Populate dark halo merger trees with uncorrelated BH and Mstar

Follow evolution with recipes for star formation and BH accretion that 
reproduce what is globally observed (see later) but without any coupling 
of the two for individual galaxies (no feedback).
It is possible to recreate the MBH-M relation at z=0 with correct slope!
MBH-M can also be the result of random merging events (Peng 2007)4

Fig. 3.— Left: Initial uncorrelated high redshift seeds for M∗ and MBH (blue filled squares) and resulting z = 0 MBH–Mbulge scaling
relation for a subset of 400 randomly selected merger trees (red points), compared to the observed local relation in black, including the
compilation from (Feoli & Mancini 2009, circles), low-mass spheroids (open squares) and upper limits for spiral bulges (triangles) from
Greene et al. (2008). The solid line is the linear fit by Häring & Rix (2004) with a slope of 1.12. Right: The full set of resulting 10932
galaxies at z = 0 with the low–z data overplotted.

lie above the mean slope – and this without adjustable
parameters beyond normalization.
As an important remark we want to stress that the

results in Figure 3 do not depend on our parametrization
of SF rate or BH accretion. For example changing the
functional form of f or g in Eqs. 1 and 2 only marginally
affects the scatter of the simulated MBH–Mbulge–relation
and leaves the slope unchanged. The same is true for the
other parameters described in the previous sections, with
the sole exception of the assumed initial seeding masses:
The larger the initial MBH and M∗, the less mass has to
be created by SF and BH accretion, which subsequently
experiences fewer mergers and hence leads to a smaller
scatter in the scaling relations at z = 0.

5. DISCUSSION

We showed above that the BH–bulge mass scaling re-
lation in the local Universe – a relation between prop-
erties of individual galaxies – is produced naturally by
the merger-driven assembly of bulge and BH mass, and
without any coupling of SF and BH mass growth per
individual galaxy.
The latter is made sure by the inputs into our model

(initial conditions plus SF and BH accretion descrip-
tions) which only act on the ensemble averages with-
out any forced coupling of stellar mass and BH growth.
This is a difference to e.g. the work by Hirschmann et al.
(2010). Their study is a very systematic assessment of
how the scaling relation scatter evolves under the influ-
ence of galaxy merging. However, their initial setup in
all cases was an existing correlation of MBH and M∗, and
they deliberately ignored the influence from SF and BH
accretion. Other recent studies investigating this subject
either explicitly include AGN feedback (Robertson et al.
2006; Booth & Schaye 2009; Johansson et al. 2009) or
couple the merging scenario with a self regulation pre-

scription for BH growth (Volonteri & Natarajan 2009).
The convergence power of galaxy merging is very

strong for a realistic halo merger history, even with a
correct placement of SF and BH accretion along cos-
mic time. This means that the mechanism Peng (2007)
sketched in his thought experiment works also in a realis-
tic Universe – hence the scaling relations can be entirely
explained without any physical mechanisms that directly
couples Mbulge and MBH growth for a given object.

In the last decade a substantial number of at-
tempts were made to measure local and higher red-
shift scaling relations of MBH–Mbulge, MBH–σbulge,
or MBH–Lbulge (Treu et al. 2004; Peng et al. 2006a,b;
Woo et al. 2006; Treu et al. 2007; Schramm et al. 2008;
Jahnke et al. 2009; Merloni et al. 2010; Bennert et al.
2010; Decarli et al. 2010) and to interprete them with
respect to the mechanisms that couple BH growth and
their impact on galaxy formation. Which implications
does the non-causal origin of the scaling relations have
for these results? If the mean cosmic M∗ and MBH actu-
ally evolved similarly, our results explain at least a part
of the bulge scaling relation evolution for galaxies with
substantial disk components: it is the simple conversion
of disk to bulge mass in galaxy mergers. What still re-
mains interesting and needs to be substantiated is how
at high redshifts the relation between MBH and total M∗

(or even Mbulge for bulge dominated galaxies) evolves
(e.g. Walter et al. 2004). This would continue to pre-
dict a substantial early BH growth – with corresponding
implications for BH feeding models.
One other aspect that could serve as a diagnostic is the

evolution of the scaling relation scatter. When coupled
with predictions of BH and stellar mass assembly from a
proper model, the scatter can be used to study e.g. the
distribution of seed MBH at early times. We will follow

Jahnke & Macciò 2010
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how the scaling relation scatter evolves under the influ-
ence of galaxy merging. However, their initial setup in
all cases was an existing correlation of MBH and M∗, and
they deliberately ignored the influence from SF and BH
accretion. Other recent studies investigating this subject
either explicitly include AGN feedback (Robertson et al.
2006; Booth & Schaye 2009; Johansson et al. 2009) or
couple the merging scenario with a self regulation pre-

scription for BH growth (Volonteri & Natarajan 2009).
The convergence power of galaxy merging is very

strong for a realistic halo merger history, even with a
correct placement of SF and BH accretion along cos-
mic time. This means that the mechanism Peng (2007)
sketched in his thought experiment works also in a realis-
tic Universe – hence the scaling relations can be entirely
explained without any physical mechanisms that directly
couples Mbulge and MBH growth for a given object.

In the last decade a substantial number of at-
tempts were made to measure local and higher red-
shift scaling relations of MBH–Mbulge, MBH–σbulge,
or MBH–Lbulge (Treu et al. 2004; Peng et al. 2006a,b;
Woo et al. 2006; Treu et al. 2007; Schramm et al. 2008;
Jahnke et al. 2009; Merloni et al. 2010; Bennert et al.
2010; Decarli et al. 2010) and to interprete them with
respect to the mechanisms that couple BH growth and
their impact on galaxy formation. Which implications
does the non-causal origin of the scaling relations have
for these results? If the mean cosmic M∗ and MBH actu-
ally evolved similarly, our results explain at least a part
of the bulge scaling relation evolution for galaxies with
substantial disk components: it is the simple conversion
of disk to bulge mass in galaxy mergers. What still re-
mains interesting and needs to be substantiated is how
at high redshifts the relation between MBH and total M∗

(or even Mbulge for bulge dominated galaxies) evolves
(e.g. Walter et al. 2004). This would continue to pre-
dict a substantial early BH growth – with corresponding
implications for BH feeding models.
One other aspect that could serve as a diagnostic is the

evolution of the scaling relation scatter. When coupled
with predictions of BH and stellar mass assembly from a
proper model, the scatter can be used to study e.g. the
distribution of seed MBH at early times. We will follow

Jahnke & Macciò 2010

Is MBH-spheroid a non-causal relation 
just telling us that there are big BHs in 

big galaxies?
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Demography of local black holes

The following ingredients allow a demography of BHs in the nearby universe:

assume BHs resides in the nuclei of all nearby galaxies

assume all BHs follow the scaling relations with host spheroid (bulge): 
MBH-σ,L

combine with the luminosity- or σ- function of spheroids

obtain the mass function on BHs in the local universe
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Demography of local black holes
dN = φ(MBH)dMBH

number of BHs per unit volume with 
mass in MBH, MBH+dMBH range

φ(MBH) =
�

+∞

0

P (MBH|Lsph)φ(Lsph)dLsph

φ(MBH) =

�
+∞

0

P (MBH|σe)φ(σe)dσe

ϕ(Lsph), ϕ(σe) are Lsph, σe 
functions of spheroids
P(MBH|Lsph), P(MBH|σe) are 
the scaling relations 
written as conditional 
probabilities
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ρBH =
�

+∞

0

MBHφ(MBH)dMBH BH mass density

P (MBH|σe) = exp

�
−1

2

�
log(MBH/M⊙)− a− b log(σe/200 km s−1)

σ0

�2
�

is the MBH-Lsph relation with intrinsic scatter σ0 (assumed normally distributed).

For example:



Luminosity function of spheroids
To obtain the luminosity function of spheroids, one has to apply a bulge/
total correction (B/T=1 for ellipticals).
B/T depends on the morphological type 
→ need LF per morphological type

No. 2, 2009 NEARBY GALAXIES IN THE 2 µm ALL SKY SURVEY. I. 961
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Figure 6. Number density as a function of distance modulus for 1349 galaxies in
the K10/3000 sample segregated by morphological type. For reasons discussed
in Section 3 all plotted error bars are 50% larger than calculated using the
maximum likelihood method outlined in the Appendix. The horizontal bar under
the lowest curve identifies the extent of the Virgo cluster which constitutes only
∼14% of the total density in that distance range. Thus, one is cautioned against
identifying density enhancements with individual structures because the density
is angle averaged over essentially the whole sky.
(A color version of this figure is available in the online journal.)

playing a large role in our results. Regardless of its magnitude,
cosmic variance represents a single uncertainty for the entire LF,
not an independent uncertainty in each luminosity bin, under the
assumption that the LF is independent of location.

Table 4
K-band Luminosity Function Fit Parameters

Sample φ∗/h3 M∗ − 5 log10 h α

(galaxies Mpc−3 mag−1) (mag)
(1) (2) (3) (4)

Total (11.5 ± 3.4) × 10−3 −23.41 ± 0.46 −0.94 ± 0.10
Elliptical (17.6 ± 0.9) × 10−4 −23.42 ± 0.17 −0.03 ± 0.16
S0–Sbc (15.7 ± 1.4) × 10−3 −22.49 ± 0.20 −0.18 ± 0.16
Sc–Scd (15.9 ± 4.8) × 10−4 −23.33 ± 0.33 −1.41 ± 0.06

Notes. Columns 2–4 refer to Schechter function parameters (Figure 7). The
uncertainties reflect unweighted fits to the data points.

4.2. Parametric Fits to the K-band Luminosity Functions by
Hubble Type

Figure 7 presents K-band LFs with Schechter function fits
(Schechter 1976) for all galaxies and subsets segregated by
morphological type. The LFs are defined in Table 3, and the
corresponding Schechter function fit parameters are listed in
Table 4. For the total K-band LF, values for the parameters
M∗ − 5 log10 h, φ∗/h3 and α agree within 2σ of previous
determinations (Jones et al. 2006; Eke et al. 2005; Bell et al.
2003; Kochanek et al. 2001; Cole et al. 2001). We find a ∼ 40%
higher space density of galaxies in the range −23 < MK −
5 log10 h < −21 mag than Jones et al. (2006) which represents
a difference of about 2σ . Thus, unlike Jones et al. (2006), we
do not find a residual with respect to the best-fitting Schechter
function over that magnitude interval.

S0 Sbc galaxies Sc Scd galaxies

All Galaxies

This paper
Schechter fit to data MK 19
Jones et al. 2006

Elliptical galaxies
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Figure 7. K-band isophotal LFs for the K10/3000 sample. The filled squares represent the results of this paper and the solid lines represent Schechter fits to the
data (squares). Top left panel: entire sample of 1349 galaxies. Increasing incompleteness is expected for MK − 5 log10 h ! −19.75 mag due to the omission of
late-type (Sd and later) spiral and dwarf irregular (Im) galaxies. Stars identify the K-band SWML LF of Jones et al. (2006) for a different galaxy sample based on
2MASS isophotal magnitudes and a surface brightness dependent correction factor added to emulate total magnitudes. The Schecter fit excludes the first data point
at MK − 5 log10 h = −18.75. Top right panel: LF for 142 elliptical galaxies. The fit excludes the first data point at MK − 5 log10 h = −21.25 which is attributed to
the dwarf elliptical sequence. Lower left panel: combined K-band isophotal LF for 904 lenticular (S0) and bulge-dominated spiral (S0/a–Sbc) galaxies. Lower right
panel: LF for 247 late-type (Sc–Scd) spiral galaxies. The fit excludes the first data point at MK − 5 log10 h = −19.75. For reasons discussed in Section 3 all plotted
error bars are 50% larger than calculated using the maximum likelihood method outlined in the Appendix.

es. Devereux+2009

width; i.e., the more massive the BH, the broader the random
velocities and hence emission lines. For late-type galaxies with
T ! 3, the FWHM appears almost constant, possibly reflecting
the rotational and random velocities of the bulges alone. The
[O iii]/H! and [N ii]/H" ratios show clear differences between
subsamples A and B and subsample C. These ratios indicate the
ionization level in the emission-line gas and the relative contri-
bution of nonthermal versus thermal radiation.

The inclination-corrected rotation velocities are different in sub-
samples A and B from those in subsample C. The reason is likely
that subsample A and B galaxies have more massive bulges than
subsample C galaxies.

The G-band distributions show that subsamples A and B are
similar, while subsample C is different. The G band begins to be-
come significant in early or mid-F spectral type stars and becomes
prominent in late-F to K stars. It is weak in early-type stars and

star-forming regions. The difference among the distributions, al-
though not strong, could provide an indication that the integrated
populations are different in these subsamples. Subsample C galax-
ies generally have aweaker G band that is indicative of a younger
population. As expected, there are no statistically significant
differences involving galaxy density #gal , the projected angular
separation between the galaxy and its neighbor $p , and the in-
clination of the disk with distance.

We also investigated the role played by the level of nuclear ac-
tivity among the various parameters. Of 117 galaxies, 19 are clas-
sified as Seyfert galaxies, 26 as LINERs, 57 asH ii region galaxies,
and 15 as transition objects (HFS97). Inmost correlations and dis-
tributions, H ii region galaxies can be clearly distinguished from
the other galaxies, but there is no significant grouping among the
other (AGN) categories.

5. SUMMARY AND CONCLUSIONS

Through the calibration of the black hole–Ks bulge luminosity
relation, we determined the central black hole masses for 117
spiral galaxies using 2MASS data for a variety of morphological
stages from the spectroscopic survey of HFS97. The bulge lumi-
nosities were measured using GALFIT, a two-dimensional bulge-
disk decomposition routine.

Nuclear properties such as line width (FWHM [N ii]), as well
as emission-line ratios (e.g., [O iii]/H!, [O i]/H" , [N ii]/H" , and
[S ii]/H" ), showed a very high degree of correlation with black
hole mass. The excellent line-width correlation provides strong
support that the emission-line gas is in virial equilibrium with ei-
ther the black hole or bulge potential. The very good emission-
line ratio correlations seem to suggest that more massive black
holes give rise to harder ionizing radiation.

The only nontrivial host galaxy parameter that correlated well
with black hole mass is the inclination-corrected rotational ve-
locity. This may suggest that the black hole–bulge relation may
also extend to the dark matter halo.

The sample was divided into three subsamples, A, B, and C,
according to host galaxymorphology. Significant differenceswere

TABLE 7

AGN Model Luminosity Function Ratio

log10(MBH /M")

(1)

Mbul

(2)

%(Sa+Sb)/%(Sc)
(3)

6.00......................................................... #18.87 1.01

6.25......................................................... #19.43 1.06
6.50......................................................... #19.98 1.20

6.75......................................................... #20.54 1.58

7.00......................................................... #21.09 2.52

7.25......................................................... #21.65 4.63
7.50......................................................... #22.20 8.97

7.75......................................................... #22.76 16.69

8.00......................................................... #23.31 28.12

Notes.—Col. (1): Central BH mass. Col. (2): Absolute Ks bulge magnitude.
Col. (3): Ratio of the space densities of Sa+Sb galaxies to Sc galaxies with
bulges as bright as or brighter than, or, equivalently, with BH masses as large as
or larger than listed.

Fig. 7.—Values of!mbul vs. the Hubble stage T for the Ks data showing 1 &
standard deviations. The solid line represents the best-fit cubic function to the
Simien & de Vaucouleurs relation in the B band. The dotted line represents the
best-fit cubic function for the Ks-band relation described in the text.

Fig. 8.—FWHM ([N ii]) distribution along the Hubble stage T showing 1 &
standard deviations.
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mbul = mtot+Δmbul

es. Dong & De Robertis 2006



Local BH mass function
For 0 intrinsic dispersion, the BH mass function is just the L/σ function 
rescaled: P(MBH|Lsph) is a Diracs’s δ function.
The intrinsic dispersion significantly affects the high mass tail of the BH 
mass function.

Marconi et al. 2004



Local BH mass function
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Fig. 5.— Comparison among estimates of the local black hole mass function. Lines show estimates

using various calibrations of the M• − Lsph, M• − σ, or M• − Mstar relations as described in the

text, assuming a 0.3-dex intrinsic scatter in all cases. The grey band encompasses the range of

these estimates. Filled small circles show the determination of Hopkins et al. (2007b) using the

black hole “fundamental plane” and open circles show the determination of Graham et al. (2007)

using the relation between black hole mass and Sérsic index.

ϕ(M) M is directly the 
contribution to ρBH

Salucci +99, Yu & Tremaine 02, Marconi +04, 
Shankar +04, Tamura+06, Tundo +07, Hopkins +07, 
Graham +07, Shankar +08, Vika+09 et many al.

Shankar+09
Overall there is a general 
agreement (or not so 
large disagreement) 
among estimates from 
different authors.
The integrated BH mass 
density is 
ρBH ≃ 3.5-5.5 ×105 M 
Mpc-3

Uncertainty are mostly 
due to MBH-galaxy 
relations!
ρBH depends mostly on 
the zero points of the 
correlations



Local BH mass function
Li+11 has estimated the BHMF up to z~2, using the MBH-Mstar relation 
(and its redshift evolution, see last lecture) and phi(Mstar).
Their nice work matches previous results at z=0, indicating that the 
estimates of the BHMF and BH mass density appear to be robust.

– 19 –

Fig. 3.— The M• − Lsph relation in the K band. Lines show the M• − Lsph relation described

by Equation (7) at z = 0 (solid), z = 1 (dashed), and z = 2 (dot-dashed). The values of the free

parameters are listed in Table 1. Superimposed for comparison are the observational data from

Table 3 of Peng et al. (2006b; blue points) and Tables 2 and 3 of Bennert et al. (2010; black

triangles and red squares). Note that the tabulated data from Peng et al. (2006b) and Bennert

et al. (2010) were not corrected for luminosity evolution; the term accounting for the evolution

of the spheroid luminosity in Equation (7) is essential to perform a direct comparison. We adopt

k-corrections appropriate for early-type galaxies, assuming K − V = −2.79 mag and K −R = 2.18

mag (Fukugita et al. 1995; Girardi et al. 2003).

Fig. 4.— SMBH mass functions at z = 0, 1, and 2, derived from the galaxy LFs (red solid lines)

and the galaxy SMFs (blue dot-dashed lines). The values of the free parameters are listed in Table

1. Shaded areas represent the errors from the galaxy LFs and SMFs. In the z = 0 panel, the orange

squares mark the local SMBH mass function from Marconi et al. (2004), and the green solid points

give the corresponding derivation from Vika et al. (2009), whose mass limit is M• ≈ 107.7M!.

Li, Ho & Wang, 2011


