Formation & evolution of galaxies & SMBHs

Cedric Lacey

Durham University

Outline of lectures

- 1. Structure formation & assembly of dark halos
- 2. Gas cooling & angular momentum
- 3. Star formation & feedback
- 4. Galaxy mergers & morphologies
- 5. Cosmic evolution of galaxies
- 6. Formation of black holes
- 7. BH binaries & spin
- 8. Co-evolution of galaxies & AGN

Lecture 2: Gas cooling & angular momentum

Lecture 2 outline

Heating & cooling of gas

- Shock-heating during structure formation
- Radiative cooling
- Angular momentum & disk sizes
 - Tidal torques & angular momentum of halos
 - Disk sizes & angular momentum

Modelling galaxy formation

Shock-heating of gas during structure formation

Shock heating during structure formation

- During collapse of structures, gravitational binding energy (negative of potential energy, PE) increases
- Gravitational PE released goes into kinetic energy (KE) of dark matter (DM) & baryons
- DM: collisionless KE goes into internal KE of random motions in final object
- Gas: collisional when gas streams collide supersonically, KE converted into thermal energy (TE) in shocks

Simulation of cluster formation including gas

Simulation by Volker Springel

Shock heating

- Shocks in both filaments & halos
- But most of shock-heating in halos, since these contain most of grav PE
- Gas follows DM quite closely up until shocks occur
- On cluster scales, t_{cool} >> t_{dyn} so radiative cooling has little effect
- In this case, gas & DM have similar distributions even after shocking

Simple estimate of shockheating in halo formation

- Halos in simulns found to be roughly in dynamical equilibrium at mean interior densities $M(\langle r_{vir} \rangle)/(4\pi r_{vir}^3/3) > \rho_{vir}$
- given by spherical collapse model: $\rho_{vir}(z) \sim 100 \ \rho_{av}(z)$
- defines characteristic radius r_{vir} for each halo
- characteristic circular velocity for halo V_{vir}

$$V^2_{vir} = GM(\langle r_{vir}) / r_{vir}$$

- Gas falling into halo releases grav PE per unit mass ~ GM/r_{vir} = V²_{vir}
- This KE is thermalized in shock
- Thermal energy per unit mass is $\sim kT/\mu m_H$
- So if radiative cooling in shock negligible, gas in halos shock-heated to characteristic temperature T_{vir}

$$kT_{vir} = \frac{1}{2}\mu m_H V^2_{vir}$$

 Gas at this temp is supported against further collapse in halo by its thermal pressure

Density & temperature profiles of simulated cluster

gas density

gas temperature

Radiative cooling of gas in halos

Importance of radiative cooling to galaxy formation

- Radiative cooling is CRITICAL!!
- In absence of cooling, gas has similar distribution to DM
- To form stars, gas must be able to dissipate thermal energy and undergo gravitational collapse in halos to become self-gravitating
- Without radiative cooling, gas cannot become selfgravitating, since pressure supported against collapse & mean density dominated by DM by factor ~10
- So radiative cooling an essential step in galaxy formation

Simulation of disk galaxy formation

Role of radiative cooling in galaxy formation

- In galaxy size halos, radiative cooling of gas IS important, t_{cool} < t_{Hub}
- Dissipation of thermal energy allows gas to sink towards centre of halo
- Gas ends up in disk of radius r_{gal} ~ 10 kpc
- very different from DM in sphere of radius
 r_{vir} ~100 kpc

Radiative cooling

- In general, define radiative cooling rate per unit volume Λ(n,T,Z)
 - depends on atomic number density (n), temperature (T) & metallicity (Z)
- And radiative cooling timescale

$$t_{cool}(n,T,Z) = \frac{\frac{3}{2}nkT}{\Lambda(n,T,Z)}$$

 Radiative cooling rate depends on atomic & molecular processes

Radiative cooling processes in low-density gas (1)

Compton cooling

- Free electrons cool off CMB photons
- 1-body, $\Lambda \alpha n_e (T-T_{CMB}) U_{CMB}$
- Cooling time t_{comp} independent of gas density & temperature (for T >> T_{CMB})
- t_{comp} α 1/U_{CMB} α 1/(1+z)⁴
- Only important at high-z, when t_{comp} < t_H =1/H
 i.e. z>6

Radiative cooling processes in low-density gas (2)

• Atomic

- 2-body, $\Lambda \alpha n^2 L(T)$
- Collisional excitation of atomic levels
- Recombination
- Bremsstrahlung
- In primordial gas, only H & He
- In chemically enriched gas, cooling by metal ions (especially O, Fe) important
- Metals dominate cooling for $Z > 0.1 Z_o$

Radiative cooling processes in low-density gas (3)

• Molecular

- 2-body, $\Lambda \alpha n^2 L(T)$
- Molecular cooling important at low T, when atoms mostly neutral
- In primordial gas, H_2 is only coolant for T < 10⁴ K
- But H₂ easily photo-dissociated, so expected to be important coolant in galaxy halos only in first generation of objects to form in universe
- In chemically enriched gas, cooling by other molecules also (e.g. CO)
- But only in very dense gas which can self-shield against photo-dissociation

Atomic cooling function

For low-density gas in collisional ionization equilibrium

Primordial gas (H+He)

Metal-enriched gas

General features of cooling

- t_{cool} α T/(nL(T)) for atomic & molecular cooling – decreases with increasing n
- Atomic cooling cuts off for T < 10^4 K

=> t_{cool} becomes v.long

- For T>10⁶-10⁷ K, dominated by bremsstrahlung, so L(T) α T^{1/2}
 - \Rightarrow t_{cool} α T^{1/2}/n
 - increases with T
- So cooling most rapid for intermediate T ~ 10⁴
 10⁶ K (for fixed n)

Cooling depends on halo M & z

- Halos all have same mean density at given redshift $\rho_{\text{vir}} \alpha (1+z)^3$
- But temperature increases with mass $T_{vir} \alpha V_{vir}^2 \sim GM/r \alpha M^{2/3} (1+z)$
- So cooling in halos cuts off below M_{min}(z) corresponding to T_{vir} ~ 10⁴ K, and becomes inefficient for large M
- Since $t_{cool} \alpha 1/n \alpha 1/(1+z)^3$ while Hubble time $t_H \alpha 1/(1+z)^{3/2} => t_{cool}/t_H \alpha 1/(1+z)^{3/2}$
- so cooling is more effective at high-z for given T_{vir} & Z

Characteristic mass from radiative cooling in halos (Rees & Ostriker 1977)

• "efficient cooling" for $t_{cool} < t_{ff}$ • free-fall time $t_{\rm ff} \alpha$ $1/(G\rho)^{1/2} \alpha 1/n^{1/2}$ • n α (1+z)³ for halos at virial density • $t_{cool} \alpha T/(nL(T))$ correponds to being above curve in diagram

defines characteristic halo mass $M_{crit} \sim 10^{11}$ - $10^{12} M_{o}$ above which cooling inefficient

c.f. observed galaxy stellar mass function at z=0

 break in observed galaxy mass function at $M_{oal} \sim 10^{11} M_o$ corresponds to halo mass ~ $10^{12}M_{o}$ similar to prediction of cooling timescale argument - suggests that cooling sets characteristic mass of galaxies

Cold vs Hot accretion

- more recent work (e.g. Birnboim & Dekel 2003, Keres et al 2005) suggests:
 - t_{cool} < t_{ff} gas doesn't shock heat to T_{vir}, cold gas accretes along filaments - "cold accretion"
 - t_{cool} > t_{ff} gas shock-heats to T~T_{vir}, then cools quasi-statically in halo - "hot accretion"
- however, doesn't affect argument about characteristic galaxy mass scale due to cooling

Cold vs hot accretion of gas in halos

max T of accreted gas

fraction of gas accreted in cold mode

Keres etal 2005

Cold vs hot accretion (3)

virial shock forms only for M
 M_{crit}

•Cold accretion is along filaments

Dekel & Birnboim 2006

Cold vs hot accretion (3)

virial shock
 forms only for M
 M_{crit}

 cold accretion is along filaments

Ocvirk et al 2008

Tidal torques & origin of angular momentum

Importance of angular momentum in galaxy formation

- If gas in halo can radiate all of its energy, then what halts its gravitational collapse is angular momentum (assuming cannot transfer all of this to DM halo)
- Stars & gas in galactic disks are on nearly circular orbits - centrifugally supported against gravity
- So sizes of galaxy disks are controlled by how much angular momentum they have

Origin of angular momentum

- Initial density perturbns which seed structure formation through gravitational instability have no angular momentum
- angular momentum actually produced by nonlinear evoln of density perturbns
- result of departures from spherical symmetry
 - generate quadrupolar gravitational fields
 - which act on quadrupole moment of mass distribution of density fluctuations
- perturbations gain ang mtm by tidal torques

Generation of angular momentum by tidal torques

• Ang mtm of object changes due to external torques:

$$\underline{\dot{J}} = \int (\underline{r} - \underline{r}_{CM}) \times \nabla \Phi_{ext} \rho dV$$

• Expand Φ around centre of mass (CM) of object:

$$\dot{J}_i = -\varepsilon_{ijk} T_{kl} I_{jl}$$

• Where T_{kl} is gravitational tidal field at CM

$$T_{kl} = \partial^2 \Phi_{ext} / \partial x_k \partial x_l$$

• And I_{il} is moment of inertia tensor

$$I_{jl} = \int (x_j - x_j^{CM})(x_l - x_l^{CM}) \rho dV$$

 Thus ang mtm grows due to coupling of external tidal field to quadrupole moment of object

Growth of angular momentum of dark matter

White 1984

• Perturbn theory -> J ~ t ~ $a^{3/2}$

- N-body sims show J roughly follows this until structure turns around and collapses
- J then freezes out

Spin parameter λ

 Dimensionless parameter useful as measure of halo ang mtm

 $\lambda = J \left| E \right|^{1/2} / G M^{5/2}$

• For object in virial equilibrium, with velocity dispersion σ and rotational velocity V_{rot} < σ can show

 $\lambda \approx (1/4)(V_{rot}/\sigma)$

- So for λ<<1, object is weakly rotating, supported against gravity by random motions
- For λ~1, strongly rotating, supported by rotational motions
- Halos in cosmological sims all have $\lambda <<1$, so slowly rotating

Spin parameters of halos in numerical simulations

- median $\lambda \sim 0.05$
- almost indept of halo mass
- or redshift
- or cosmology
- or initial spectrum of density fluctuations

Bett 2006

Sizes of galaxy disks

Simple model for radii of galaxy disks

Assume:

- gas cools out to radius
 r_{cool}
- gas in halo initially has same J/M as DM
- gas conserves J as it collapses
- gas collapse stops when it becomes rotationally supported

- To simplify calc, also assume:
 - Ignore self-gravity of baryons
 - Halo has singular isothermal sphere profile

$$V_c = const \& V_{rot} = const$$

- $\rho_{\rm H} = V_{\rm c}^2 / (4\pi \ {\rm G} \ {\rm r}^2)$
- Disk has exponential surface density profile $\Sigma_{\rm D} \sim \exp(-r/h_{\rm D})$
- Then

 $J_{H}/M_{H} = 2 \lambda_{H} V_{c} r_{cool} \text{ (for DM within } r < r_{cool})$ $J_{D}/M_{D} = 2 h_{D} V_{c}$

- So setting $J_D/M_D = J_H/M_H$ gives $h_D = \lambda_H r_{cool}$
- So gas collapses in radius by factor $r_{disk}/r_{cool} \sim h_D/r_H \sim \lambda_H \sim 0.1$

Simple model for galaxy disk radii

- thus predict:
 - $-r_{disk} \sim \lambda_{H} r_{cool}$ (if gas cools only within radius r_{cool})
 - $-r_{disk} \sim \lambda_H r_{vir}$ (if all gas in halo cools to form disk)
- in rough agreement with observed sizes of galaxy disks at z~0 (when use distribution of λ_H from sims) (e.g. Fall & Efstathiou 1980, de Jong & Lacey 2000, Shen et al 2003)