Formation & evolution of galaxies & supermassive black holes

Cedric Lacey

Durham University

Outline of lectures

- 1. Structure formation & assembly of dark halos
- 2. Gas cooling & angular momentum
- 3. Star formation & feedback
- 4. Galaxy mergers & morphologies
- 5. Cosmic evolution of galaxies
- 6. Formation of black holes
- 7. BH binaries & spin
- 8. Co-evolution of galaxies & AGN

Further reading for lectures 1-5

- <u>Galaxy Formation and Evolution</u> by Houjun Mo, Frank van den Bosch and Simon White
 - the best textbook on galaxy formation, very comprehensive & up-to-date
- <u>Galaxy formation theory by Andrew Benson</u> (Physics Reports vol 495, p33, 2010)
 - a useful recent review article
- <u>A primer on hierarchical galaxy formation: the semi</u> <u>-analytical approach by Carlton Baugh (Reports on</u> <u>Progress in Physics, vol 69, p3101, 2006)</u>

- another useful review, good overview, less technical

Lecture 1: Structure formation & dark matter halos

Lecture 1 outline

- Contents of universe
- Outline of structure formation
- Non-linear evolution of structure in dark matter - N-body simulation results
- Analytical approaches to assembly of dark matter halos & halo mass function
- Halo density profiles

Constituents of universe

Contents of the universe

 dark energy = mysterious form of energy which opposes gravity

 dark matter = invisible form of matter which interacts only via gravity

Dark Matter – observational evidence

- Dynamics of galaxy clusters
- Galaxy rotation curves
- Gravitational lensing

Non-baryonic dark matter candidates

Type candidate mass		
hot	neutrino	a few eV
warm	?	a few keV
cold	axion neutralino	10 ⁻⁵ eV ->100 GeV

Standard model is Cold Dark Matter (CDM)

Dark energy – observational evidence

Expansion of universe from high-z supernovae: - SNIa (standard candles) at z~0.5-1 are fainter than expected even if universe were empty => cosmic expansion must have been accelerating since light was emitted

Standard model for dark energy is cosmological constant (Λ)

Origin of structure in the universe

Standard model for structure formation

- Universe today contains:
 - ~70% dark energy, ~25% dark matter, ~4% baryons
- Inflation made universe spatially flat
- Also generated spectrum of adiabatic density fluctuations
- Density fluctuations grew by gravitational instability to produce present-day structure

Cosmic Inflation

Inflation - period of exponential expansion driven by scalar field

Standard inflation predicts:

1. FLAT GEOMETRY:

$$\Omega_m + \frac{\Lambda}{3H^2} = 1$$

^{2.}
$$\left(\frac{\delta \rho}{\rho}\right)^2 \sim k^3 \left|\delta_k\right|^2$$

$$\left[\left| \delta_k \right|^2 \alpha k^n \quad n = 1 \\ \text{Gaussian amplitudes} \right]$$

Spectrum of inhomogeneities

Х

ρ

Fourier decomposition of density field

Dimensionless power

$$\delta(\mathbf{r}) \equiv \frac{\delta\rho}{\rho} = \sum_{k} \delta_k e^{-i\mathbf{k}\cdot\mathbf{r}}$$
$$\Delta^2(k) \equiv \frac{d\sigma^2}{d\ln k} \propto k^3 |\delta_k|^2$$

power spectrum P(k) = |δ_k|²
Δ²(k) ~ k³ |δ_k|² = average (δρ/ρ)²
on length scale λ ~ 1/k

Spectrum of inhomogeneities

Fourier decomposition of density field

Dimensionless power

$$\delta(\mathbf{r}) \equiv \frac{\delta\rho}{\rho} = \sum_{k} \delta_k e^{-i\mathbf{k}\cdot\mathbf{r}}$$
$$\Delta^2(k) \equiv \frac{d\sigma^2}{d\ln k} \propto k^3 |\delta_k|^2 \propto k^{3+n} T_k^2$$

Х

Primordial power-law spectrum (n=1?)

Transfer function $T_k(k,z)$ _____

- describes growth of density perturbations in linear regime after inflation

Evolution of a density perturbation (dark matter)

Density contrast

T1: horizon has expanded to enclose fluc'n

T2: epoch of matter-radiation equality

T1<t<T2 fluc'ns in radiation density and expansion of universe stop growth of density contrast

Spectrum of linear density fluctuations for CDM

k³ $|\delta_k|^2$ = average $(\delta \rho / \rho)^2$ on length scale $\lambda \sim 1/k$ according to linear perturbation theory at z=0

The CMB

Cosmic Initial Conditions: observational constraints from CMB fluctuations

CMB temperature fluctuations confirm ACDM density fluctns & give most precise constraints on cosmological params

Observed power spectrum of linear density fluctuations

Obs measures of P(k) from:

• CMB

- galaxy clustering
- weak lensing
- \bullet Ly α forest
- confirm ΛCDM

Hierarchical structure formation

in linear regime (δρ/ρ <<1), perturbations on all scales grow as δρ/ρ α a(t) = 1/(1+z) after recombination
perturbations collapse to gravitationally bound objects when δρ/ρ ~ 1 according to linear theory
=> perturbations with larger (δρ/ρ)_{init} collapse earlier

 in CDM, typical δρ/ρ increases monotonically with decreasing mass scale
 => small objects collapse first, larger objects later
 HIERARCHICAL or bottom-up structure formation

Formation of dark matter halos

N-body simulations of structure formation in the dark matter

- most general method to calculate evolution of structure in dark matter (DM) in non-linear regime
- start from small density fluctuations with CDM power spectrum
- evolve collisionless DM particles under gravity only
- as first approximation, can ignore effects of baryons on DM

Growth of structure in DM from initial fluctuations

Movie of Millennium simulation (Springel et al 2005)

Formation of dark matter halos

- density fluctuations in the DM stop expanding with universe when δρ/ρ ~ 1
 undergo collisionless gravitational collapse to objects in approximate dynamical equilibrium – DARK MATTER HALOS
 small halos typically form first
- large halos then assemble by MERGERS of smaller halos

Formation of a single DM halo

Aquarius simulation of M ~ 10^{12} M_o halo

Spherical collapse model for dark halo formation

- uniform density spherical DM perturbation has exact analytical solution for evolution into nonlinear regime
- provides useful guide to understand DM halo formation seen in N-body simulations
- even though real DM halos form through mergers of smaller objects - so clearly NOT spherical!

Evolution of radius of uniform spherical density perturbation

Collapse redshift for spherical perturbation

- Simplest for Ω =1 cosmology:
- Collapse occurs when according to linear perturbn theory

 $\delta_{\text{LIN}}(t_{\text{coll}}) = (\delta \rho / \rho)_{\text{LIN}} = \delta_{\text{c}} = 1.69$

- V. similar result in ΛCDM cosmology
- So perturbn with initial amplitude δ_i at t_i collapses at time t_{coll} given by:
 δ_i D(t_{coll})/D(t_i) = δ_c where D(t) α t^{2/3} α 1/(1+z) is growth factor in linear perturbn theory
- For $\Omega=1$, $t_{coll} = t_i (\delta_c/\delta_i)^{3/2} \Rightarrow (1+z_{coll}) = \delta_{LIN}(t_0)/\delta_c$

Overdensity of just-collapsed halo in spherical collapse model

- Assume halo reaches virial equilibrium after collapse
- Energy conservation + Virial theorem => GM/R_{turn} = GM/2R_{vir} so R_{vir} = R_{turn}/2
- So for Ω=1, mean overdensity is ρ(halo)/ρ(background) = 18π² = 178
- Similar for ΛCDM cosmology
- So halos at redshift z have mean density

 $\rho_{vir}(z) \sim 100 \ \rho_{av}(z) \ \alpha \ (1+z)^3$

Results from spherical collapse model

For open & flat cosmologies

Eke et al 1996

Critical linear perturbn overdensity for collapse

Mean overdensity (relative to critical) for just-virialized halos

Mass function of DM halos

dn/dM = number density of halos per unit halo mass M (M²/ρ) dn/dM = fraction of total DM density in halos per InM

Halo mass function: simulations vs analytical models

wide range of halo masses at any time
characteristic mass increases with time due to hierarchical buildup of structure

y-axis gives fraction of total mass per log10 range in M

Press-Schechter mass function (Press & Schecter 1974, Bond et al 1991)
analytical model for halo mass function based on:

- spherical collapse model for perturbns
- Gaussian statistics for linear density perturbns
- predicts main features of halo mass function:
 - exponential cutoff at high-M
 - divergent power-law behaviour for dn/dM at low-M

$$\frac{dn}{dM} = n(M) = \sqrt{\frac{2}{\pi}} \frac{\overline{\rho}}{M^2} \frac{\delta_c}{\sigma(M)} \left| \frac{d \ln \sigma}{d \ln M} \right| e^{-\left(\frac{\delta_c^2}{2\sigma^2(M)}\right)}$$

 δ_c = collapse threshold, $\sigma(M) = r.m.s (\delta \rho / \rho)_{LIN}$ in sphere of mass M

Sheth-Tormen mass function (Sheth & Tormen 1999, Sheth et al 2001)

 Obtain even better fit to simulated halo MFs if allow for ellipsoidal collapse (instead of spherical collapse)

$$\begin{split} f(\sigma;\mathbf{S}-\mathbf{T}) &= A\sqrt{\frac{2a}{\pi}} \bigg[1 + \big(\frac{\sigma^2}{a\delta_c^2}\big)^p \bigg] \frac{\delta_c}{\sigma} \exp\bigg[-\frac{a\delta_c^2}{2\sigma^2} \bigg] \\ A &= 0.3222, \, a = 0.707 \text{ and } p = 0.3 \end{split}$$

 where f(σ) = (M/ρ) dn/dlnσ
 value of p follows from ellipsoidal collapse a from fit to simulations A from normalization of MF

Sheth-Tormen halo mass function for CDM at z=0

dn/dM α M⁻²
(approx) at low M
exponential cutoff above M~10¹⁴ M_o

The Structure of Cold Dark Matter Halos

Structure of dark halos in CDM

- DM halos assemble by merging smaller objects
- however, tidal forces strip most of DM off halos as merge
- resulting halos have most (~90%) of DM in smooth, roughly spherical component
- only ~10% of DM remains in bound substructures orbiting in main halo
- halos are in approx dynamical equilibrium for r<r_{vir}, such that mean ρ(<r_{vir}) ~ 100ρ_{av} (as predicted by spherical collapse model)

Halo density profiles

 halos of all masses have very similar density profiles:

$$\rho(r) \propto \frac{1}{r(1+r/r_s)^2}$$

- r_s = r_{vir}/c, where concentration c ~ 5-20, weakly varying with M & z
- low-M halos (which form earlier) have larger c

Navarro et al 1997 (NFW)