Progress on cluster counting for the 4th concept DC

Guang Zhao for DC PID Group <u>zhaog@ihep.ac.cn</u>

CEPC Physics and Detector Meeting Jan. 11, 2023

Motivation

Excellent PID is required for CEPC physics programs

Preliminary requirement: > 2σ for 20 GeV/c pion/kaon separation

The cluster counting (dN/dx) is the most promising breakthrough in PID

Resolution has, potentially, a factor of 2 better than the dE/dx

Drift chamber with cluster counting can provide sufficient PID power while keeping a reasonable detector size

Recaps of simulation

- Ideal simulation (truth):
 - K/pi separation with dN/dx is x2 better than dE/dx
- Full simulation (more realistic, w/ electronics/noises/reconstruction):
 - 2σ K/pi separation at 20 GeV/c

Determine DC parameters with full simulation

DC Parameters		
Radius extension	800-1800 mm	
Length of outermost wires $(\cos\theta=0.82)$	5143 mm	
Thickness of inner CF cylinder	200 µm	
Outer CF frame structure	Equivalent CF thickness: 1.63 mm	
Thickness of end AI plate	35 mm	
Cell size	18 mm × 18 mm	
# of cells	24766	
Ratio of field wires to sense wires	3:1	
Gas mixture	He/iC ₄ H ₁₀ =90:10	

Major efforts in this talk

Reconstruction algorithm

Understanding beam test data

Cluster counting workflow

Reconstruction algorithm

Task:

- Both **primary electrons** and **secondary electrons** contribute peaks on the waveform
- Find the number of peaks from primary electrons

Difficulties

- High pile-up
- Could be noisy

Machine learning can make full use of the waveform information, could be effective

Step 1: Peak finding

- To detect all peaks from the waveform
- Classification for "signals" and "noises"
- Architecture: Recurrent Neural Network (RNN)

Compare to the derivative algorithm

Derivative

0.25

0.20

0.10

0.25

0.20

0.15

The NN can find the peaks more effective!

- Waveform

Truth time
Detected time

Step 2: Discrimination of the primaries

- To discriminate primary peaks from the secondary ones
- Regression problem
- Architecture: 1D Convolutional Neural Network (CNN)

N_{cls} distributions

Resolution ~23%

- ✓ Very good Gaussian-like distribution
- The resolution is very close to the truth value (~21%), which implies possible improvement on PID

Derivative

Beam test

Two rounds of beam test organized by INFN group

- First round: Nov. 2021 (Shuiting joined)
- Second round: July 2022 (Shuaiyi joined)
- Cooperation between INFN and IHEP on data analysis is ongoing

2nd round of test beam:

Federica's talk in Meeting on cluster counting in drift chambers, Jul 28, 2022 https://indico.ihep.ac.cn/event/16837/

Peak risetime estimation

- Require local maximum >0.015mV
- For each local maximum points, find the nearest early point, whose slope starts to decrease (inflection point)
- The time distance between the local maximum and the inflection points is recorded as the risetime.

- Each bin is around 0.67 ns
- Averaged risetime is 1.55 ns
- 95% of the risetimes less than 2.67 ns

Noise extraction

Data (frequency domain)

Simulation (time domain)

Noise distribution

	Data	Simulation
Mean	0.00019	0.00058
RMS	0.00125	0.00125

12

Data

Simulation

Tuning MC with data: (1) Rise-time, (2) Noise, (3) Amplitude → Better data/MC consistency

Charge distribution checks

Charge MPV vs. θ

Dashed line: Interpolation from Q(60) by track length \rightarrow Discrepancies for small θ 's due to space charge

Preliminary peak finding with derivatives

- Apply the algorithm based on 1st and 2nd derivatives on data
- Demonstrated by an example from the 2nd round test beam data

N_{cls} distributions

- A preliminary comparison between $\theta = 0^{\circ} \& 45^{\circ}$
- Next to do
 - Optimize the event selection
 - Optimize the parameters of the algorithm
 - Apply a discrimination algorithm to remove secondary peaks
 - Try ML algorithm

Collaborations on MOST-MAECI application

(China-Italy Science and Technology Cooperation)

Project: INTRePID (INnovative TRacking and Particle IDentification)

Cluster counting and cluster timing for particle identification and improved spatial resolution in drift chambers at the next generation of lepton colliders

Cooperation between INFN and IHEP on

- Beam tests for the application of the cluster counting/timing techniques
- Simulation and reconstruction
- Design and deployment of real-time ML algorithms on FPGAs

Progress on hardware: new preamplifiers

- High bandwidth current sensitive preamplifiers based on LMH6522 and AD8099 were designed
- Simulation results show the bandwidth and the gain meet the test requirements
- Test is on going. Preliminary tests verify that the gain is big enough, but noise should be further reduced

Summary and outlook

A machine learning based reconstruction algorithm is developed

Simulation is tuned with the experimental data

Plans

- Better understand the beam test data and fine tuning the MC simulation
- Optimize the reconstruction algorithm for beam test
- Extract dN/dx parameters from full simulation and perform physics studies

Backup

Reconstruction algorithm with derivatives

Peak finding algorithm based on 1st and 2nd order derivatives

- Fast and efficient
- Good pile-up recovery ability on the rising edge

Beam test objectives

Beam test plans:

- 1. First of all, need to demonstrate the ability to count clusters:
 - at a fixed $\beta\gamma$ (e.g. muons at a fixed momentum) count the clusters by
 - doubling and tripling the track length and changing the track angle;
 - changing the gas mixture.

2. Establish the limiting parameters for an efficient cluster counting:

- cluster density (by changing the gas mixture)
- space charge (by changing gas gain, sense wire diameter, track angle)
- gas gain saturation
- In optimal configuration, measure the relativistic rise as a function of βγ, both in dE/dx and in dN_{cl}/dx, by scanning the muon momentum from the lowest to the highest value (from a few GeV/c to about 250 GeV/c at CERN/H8).
- Use the experimental results to fine tune the predictions on performance of cluster counting for flavor physics and for jet flavor tagging both in DELPHES and in full simulation

Slide from Franco