CEPC AHCAL PID Use Artificial Neural Network

Siyuan SONG, Zhen WANG, Zixun XU

1

- 1. Brief ANN principle. 2. Datasets introduction. 3. Preliminary results.
- 4. ANN vs BDT comparison.

Content

Technical route

• Artificial Neural Network: Siyuan SONG

• **Boosted Decision Tree:** Zhen WANG

ANN Fundamental principle

- Need an Image (Tensor) and a label (Tensor).
- Output could be a normalized Tensor storing several probabilities.
- Net actually is a very complicated function:
 - Output = Net(image, net parameters)
- Lose function would guide optimizing parameters of the net in Gradient Descent way.
 - Loss = L(output, label)

Net

• Input: tensor(40, 18, 18), energy deposits.

Feat

- Output: tensor(3,), probability.
- 6,660,723 trainable paramaters in Net.

Classifi

Input Tensor

	Layer (type)	Output Shape	Param #				
eature Layer	Conv2d-1	[-1, 80, 16, 16]	28,880				
	BatchNorm2d-2	[-1, 80, 16, 16]	160				
	Conv2d-3	[-1, 160, 14, 14]	115,360				
	BatchNorm2d-4	[-1, 160, 14, 14]	320				
	Conv2d-5	[-1, 320, 5, 5]	461,120				
	BatchNorm2d-6	[-1, 320, 5, 5]	640				
	Conv2d-7	[-1, 480, 3, 3]	1,382,880				
	BatchNorm2d-8	[-1, 480, 3, 3]	960				
	Linear-9	[-1, 960]	4,148,160				
	BatchNorm1d-10	[-1, 960]	1,920				
sification Layer	Linear-11	[-1, 480]	461,280				
	BatchNorm1d-12	[-1, 480]	960				
	Linear-13	[-1, 120]	57,720				
	Linear-14	[-1, 3]	363				
Tota	Total params: 6,660,723						
Trai	Trainable params: 6,660,723						
Non-	Non-trainable params: 0						
Inpu	Input size (MB): 0.05						
Forw	Forward/backward pass size (MB): 1.00						
Para	Params size (MB): 25.41						
Esti	Estimated Total Size (MB): 26.46						

Data preparation

Particle\E (GeV)	20	30	40	50	60	70	80	90	100	120	160	Total	Finishec
mu+											100k	100k	100k
e+	10k		100k	100k									
pion+	10k		100k	100k									

- Train set: Validation set: Test set = 8 : 1 : 1.
- Source: Geant4 simulation data, provided by Zixun XU.

3 : 1 : 1. ovided by Zixun XU.

- Reached an encouraging overall accuracy: 98.86%.
- Each energy point: 1000 Events.
- e+ and muon+ can be classified with higher accuracy.
- pion+ events identification \bullet get a relative lower accuracy, but still > 97.08%.

- Net output probability distribution.
- Each kind of particle: 10,000 Events.
- From left to right, incident particles are Muon+, Positron+, and Pion+.
- The distinction is obvious.

- Include muon+, e+, pion+ events with extra energy.
- Each energy point: 1000 Events.
- This net could still identify "unseen" particles.
 - ▶ e+: 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 110, 115, 125, 130 GeV.
 - pion+: 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 110, 115, 125, 130 GeV.
 - muon+: 100, 120, 130, 140, 150, 170, 180, 190, 200 GeV.

9

ANN vs BDT

- Their ROC curve is very close in Pi+ signals.
- AUC stands for "Area under the ROC Curve." Classifier is better if AUC is closer to 1.
- ANN AUC = 0.996, when signal: Pi+, background: e+ & mu+.

Ref: Park S H, Goo J M, Jo C H. Receiver operating characteristic (ROC) curve: practical review for radiologists[J]. Korean journal of radiology, 2004, 5(1): 11-18.

Future plan & Conclusion & Reflection

• Tune hyper-parameters; Optimize ANN structure.

• Compare with BDT method.

Add ANN PID module into EventDisplay tool: PyShow.

. Overall accuracy reached 98. 86%, ANN $\mathrm{AUC}_{\pi_{ue}}$ reached 0.996.

Code: https://github.com/Tom0126/CEPC-AHCAL-PID.git

Loss function

Backup

mu+

Log scale

e+

pi+

Loss function