Precise predictions for Higgs boson pair production and decay

希格斯物理研讨会 2023-3-23 CCAST,北京

Higgs self-coupling

Mass generations of gauge bosons: Higgs mechanism
 Mass generations of fermions: Higgs mechanism & Yukawa couplings
 Mass generations of scalars?

In some new physics models, the trilinear Higgs self-coupling may change by O(100)%, while the couplings with gauge bosons and fermions are still in agreement with SM.

We need to measure the trilinear self coupling directly.

Higgs pair production

Borowka,et al,PRL117,012001 Baglio, et al, EPJC, 79, 459 Chen,Li, Shao,**JW**, PLB 803,135292 JHEP,2003,072

Ling,Zhang,Ma,Guo,Li,Li, PRD89,073001 Dreyer,Karlberg, PRD98,114016, PRD99,074028

Baglio,et al, JHEP1304,151 Li,Li,**JW**, PRD97,074026, PLB765,265

Englert, et al, PLB743,93 Liu, Zhang, 1410.1855 Frederix, et al, PLB 732,142

Phys.Rev.Lett. 122, 121803 (2019)

Non-resonant HH production at 13 TeV with about $36 fb^{-1}$

Final state	collaboration	allowed κ_{λ} interval at 95% CL	
		observed	expected
bbbb	ATLAS	-11 - 20	-12 - 19
	CMS	-23 - 30	-15 - 23
$bar{b} au^+ au^-$	ATLAS	-7.3 – 16	-8.8-17
	CMS	-18 - 26	-14 - 22
$bar{b}\gamma\gamma$	ATLAS	-8.1 -13	-8.2 - 13
	CMS	-11 - 17	-8.0 - 14
Combined	ATLAS	-5.0 - 12	-5.8 - 12
	CMS	-12 - 19	-7.1 - 14
Our combination	Both experiments	-6.8 - 14	-4.6 - 11

Why do we need precise prediction?

- 1. The measured events numbers do not depend on the theoretical prediction, but the interpretation does.
- 2. As time goes by, the experimental uncertainties will reduce. Theoretical uncertainties will reduce only after we calculate higher-order corrections.
- 3. Renormalization and factorization scale uncertainties are sizable, especially for Higgs productions.

Q:How well is the approximation?

D.Y.Shao, C.S.Li, H.T.Li, JW, JHEP07(2013)169

gg>HH@NNLL

D.Y.Shao, C.S.Li, H.T.Li, JW, JHEP07(2013)169

Bonciani, Degrassi, Giardino, Grober, PRL 121, 162003 (2018)

Expand in mH

Xu and Yang, JHEP 1901, 211 Wang, Wang, Xu, Xu, Yang, PRD104,051901

Numerical method: sector decomposition

$$I = \int_0^1 dx \int_0^1 dy x^{-1-\epsilon} y^{-\epsilon} (x+y-xy)^{-1}$$
$$I_1 = \int_0^1 dx x^{-1-\epsilon} \int_0^1 dt t^{-\epsilon} (1+t-xt)^{-1},$$
$$I_2 = \int_0^1 dy y^{-1-2\epsilon} \int_0^1 dt t^{-1-\epsilon} (1+t-yt)^{-1}$$

The QMC methods were born in the 1950s and 1960s from the desire to achieve faster

convergence than the MC rate of O(1/n), and can achieve a convergence rate of order O(1/n) for very smooth functions.

$$x^{-1+n\epsilon} = \frac{\delta(x)}{n\epsilon} + \left(\frac{1}{x}\right)_{+} + n\epsilon \left(\frac{\ln x}{x}\right)_{+} + \frac{(n\epsilon)^2}{2!} \left(\frac{\ln^2 x}{x}\right)_{+} + O(\epsilon^3)$$

Binoth and Heinrich, NPB, 585, 741

Li, JW, Yan, Zhao, Chin.Phys.C40, 033103

This method was soon adopted by the SecDec group in their code, and used in various calculations. https://pypi.org/project/pySecDec/

Borowka, et al, PRL 117, 012001

gg>HH@NLO: Full mt dependence

	PDF4LHC15	MMHT2014
σ_{LO}	19.80 fb	23.75 fb
σ_{NLO}^{HTL}	38.66 fb	39.34 fb
σ_{NLO}	32.78(7) fb	33.33(7) fb
$\sigma(gg \to HH)$	$) = 32.78(7)^{+13.5\%}_{-12.5\%}$	(PDF4LHC15)

Borowka, Greiner, Heinrich, et al, Phys.Rev.Lett.117,012001(2016), Baglio, Campanario,Spira, et al, 1811.05692

gg>HH@NLO: Full mt dependence

 $gg \rightarrow HH$ at NLO QCD | $\sqrt{s} = 14$ TeV | PDF4LHC15 1 $\overline{\mathrm{MS}}$ scheme with $\overline{m}_t(\overline{m}_t)$ $\overline{\mathrm{MS}}$ scheme with $\overline{m}_t(m_{HH}/4)$ $\overline{\text{MS}}$ scheme with $\overline{m}_t(m_{HH})$ 10^{-1} OS scheme, $m_t = 172.5 \text{ GeV}$ 10^{-2} 10^{-3} ${\rm d}\sigma/{\rm d}m_{HH}~{\rm [fb/GeV]}$ $\mu_R = \mu_F = m_{HH}/2$ 10^{-4} Full NLO results for different top-quark masses 1.61.4Ratio to OS 1.21.00.80.60.40.2400 600 1000 800 12001400 $m_{_{HH}} \, [{
m GeV}]$

$$\frac{d\sigma_{NLO}}{dQ}\Big|_{Q=300 \text{ GeV}} = 0.02978(7)^{+6\%}_{-34\%} \text{ fb/GeV},$$

$$\frac{d\sigma_{NLO}}{dQ}\Big|_{Q=400 \text{ GeV}} = 0.1609(4)^{+0\%}_{-13\%} \text{ fb/GeV},$$

$$\frac{d\sigma_{NLO}}{dQ}\Big|_{Q=600 \text{ GeV}} = 0.03204(9)^{+0\%}_{-30\%} \text{ fb/GeV},$$

$$\frac{d\sigma_{NLO}}{dQ}\Big|_{Q=1200 \text{ GeV}} = 0.000435(4)^{+0\%}_{-35\%} \text{ fb/GeV}$$

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+4\%}_{-18\%} \text{ fb},
\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+4\%}_{-18\%} \text{ fb},
\sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 127.8(2)^{+4\%}_{-18\%} \text{ fb},
\sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1140(2)^{+3\%}_{-18\%} \text{ fb}$$

Baglio, Campanario, Spira, et al, 1811.05692, 2003.03227

Many checks:

- 1. Self consistency (gauge invariance, poles cancellation, RG equations)
- 2. Reproduce single Higgs xs up to NNLO
- 3. Reproduce double Higgs xs up to NNLO

Class-(a)

$$\frac{d\sigma_{hh}^{a}}{dm_{hh}} = f_{h \to hh} \left(\frac{C_{hh}}{C_{h}} - \frac{6\lambda_{hhh}v^{2}}{m_{hh}^{2} - m_{h}^{2}} \right)^{2} \times \left(\sigma_{h} \big|_{m_{h} \to m_{hh}} \right)$$

$$f_{h \to hh} = \frac{\sqrt{m_{hh}^{2} - 4m_{h}^{2}}}{16\pi^{2}v^{2}}$$
Dulat, Lazopoulos, Mistlberger iHixs, 1802.00827

Class-(b)

$$\begin{aligned} d\sigma_{hh}^{b} &= d\sigma_{hh}^{b} \Big|_{p_{T}^{hh} < p_{T}^{\text{veto}}} + d\sigma_{hh}^{b} \Big|_{p_{T}^{hh} > p_{T}^{\text{veto}}} \\ \frac{d\sigma_{hh}^{b}}{dp_{T}^{hh}} &= H^{b} \otimes B_{g} \otimes B_{g} \otimes S \times \left(1 + \mathcal{O}\left(\frac{\left(p_{T}^{hh}\right)^{2}}{Q^{2}}\right)\right) \end{aligned}$$

The idea of qT subtraction

Validation of qT subtraction

Validation of qT subtraction

How large are NNNLO corrections?

order \sqrt{s}	$13 { m TeV}$	$14 { m TeV}$	$27 { m TeV}$	$100 { m TeV}$
LO	$13.80^{+31\%}_{-22\%}$	$17.06^{+31\%}_{-22\%}$	$98.22^{+26\%}_{-19\%}$	$2015^{+19\%}_{-15\%}$
NLO	$25.81^{+18\%}_{-15\%}$	$31.89^{+18\%}_{-15\%}$	$183.0^{+16\%}_{-14\%}$	$3724^{+13\%}_{-11\%}$
NNLO	$30.41^{+5.3\%}_{-7.8\%}$	$37.55^{+5.2\%}_{-7.6\%}$	$214.2^{+4.8\%}_{-6.7\%}$	$4322_{-5.3\%}^{+4.2\%}$
$N^{3}LO$	$31.31^{+0.66\%}_{-2.8\%}$	$38.65^{+0.65\%}_{-2.7\%}$	$220.2^{+0.53\%}_{-2.4\%}$	$4438^{+0.51\%}_{-1.8\%}$

87% 18% 3%

Scale uncer. less than PDF uncer. 3.3% now !

How to choose a scale?

L.B.Chen, H.T.Li, H.S.Shao, JW, Phys.Lett.B,803,135292, JHEP,03(2020)072

Invariant mass of Higgs pair

$$d\sigma^{\mathbf{N}^{k}\mathbf{LO}\oplus\mathbf{N}^{l}\mathbf{LO}_{\mathbf{m}_{t}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} + \Delta\sigma_{m_{t}\to\infty}^{k,l}$$

$$d\sigma^{\mathbf{N}^{k}\mathbf{LO}_{\mathbf{B}-\mathbf{i}}\oplus\mathbf{N}^{l}\mathbf{LO}_{\mathbf{m}_{t}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} + \Delta\sigma_{m_{t}\to\infty}^{k,l} \frac{d\sigma_{m_{t}}^{\mathbf{LO}}}{d\sigma_{m_{t}\to\infty}^{\mathbf{LO}}}$$

$$d\sigma^{\mathbf{N}^{k}\mathbf{LO}\otimes\mathbf{N}^{l}\mathbf{LO}_{\mathbf{m}_{t}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} \frac{d\sigma_{m_{t}\to\infty}^{\mathbf{N}^{k}\mathbf{LO}}}{d\sigma_{m_{t}\to\infty}^{\mathbf{N}^{l}\mathbf{LO}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} + \Delta\sigma_{m_{t}\to\infty}^{k,l} \frac{d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}}}{d\sigma_{m_{t}\to\infty}^{\mathbf{N}^{l}\mathbf{LO}}}$$

$gg \rightarrow HH@NNLO$

$gg \rightarrow HH@NNLO$

$gg \rightarrow HH@NNNLO$

$gg \rightarrow HH$ including decay

$gg \rightarrow HH$ including NLO decay

$gg \rightarrow HH$ including decay

Conclusion

- Measuring Higgs self-couplings is of great importance in the future.
- Precise theoretical prediction is needed to properly interpret the data.
- The dominant channel gg>HH has been calculated up to NLO/NNNLO in the finite/infinite mt scheme.
- The higher order effects in decay should also be considered for a detailed study.

