

The Higgs field: one of the two pillars of the SM

22/3/2023

CCAST Higgs WS

Known Unknowns of the SM

- Inflation
- Mass hierarchy
- Neutrino mass & Oscillation
- Matter anti-matter asymmetry
- Vacuum stabilities: depends on particle mass
- Dark matter, Dark energy: nature & origin of its/their mass
- Naturalness: EW (Higgs mass) V.S. Planck scale

•

Known Unknowns of the SM

The Clue:

- Inflation
- Mass hierarchy
- Neutrino mass & Oscillation
- Matter anti-matter asymmetry
- Vacuum stabilities: depends on particle mass
- Dark matter, Dark energy: nature & origin of its/their mass
- Naturalness: EW (Higgs mass) V.S. Planck scale

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

Electron Positron Higgs factories

High-priority future initiatives

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

ILC (a): TDR @ 2013

FCC (b): CDR @ 2019

CEPC (c): CDR @ 2018

CLIC (d): CDR @ 2013

Yields ~ Xsec * Lumi

Yields of the CEPC

- Tunnel ~ 100 km, baseline SR Power/beam 30 MW, upgradable to 50 MW
- CEPC (90 240 GeV)
 - Higgs factory: 4M Higgs boson (10 years, 2 IP, 50 MW)
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 3 Tera Z boson (2 years, 2 IP, 50 MW), 100 M W boson (1 year)
 - Precision test of the SM, measure W boson mass to 1 MeV level via threshold scan
 - Rare decay + QCD studies

Low Energy Booster (0.4Km)

Proton Linac (100m)

IP4

- Flavor factory: b, c, tau
- QCD studies
- Upgradable to ttbar threshold (360 GeV): 500 k ttbar event (5 years, 2 IP, 50 MW)
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)

CEPC Collider Ring(50Km)

•••

• Heavy ion, e-p collision...

See also: 2205.08553

IP3

Detector & Software

Reconstructed Higgs Signatures

Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

11

Right corner: di-tau mass distribution at qqH events using collinear approximation 22/3/2023 CCAST Higgs WS

Model-independent measurement of $\sigma(ZH)$

Zhenxing Chen & Yacine Haddad

Recoil mass method. Combined precision:

 $\delta\sigma(ZH)/\sigma(ZH) = 0.5\% - \delta g(HZZ)/g(HZZ) = 0.25\%$

Indirect Access to g(HHH)

$$\sigma_{Zh} = \begin{vmatrix} \mathbf{e} \\ \mathbf{h} \end{vmatrix}^2 + 2 \operatorname{Re} \begin{bmatrix} \mathbf{z} \\ \mathbf{h} \end{bmatrix}^2 +$$

M. McCullough, 1312.3322

Higgs benchmark analyses

Higgs BSM Decay modes

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Measuring Higgs width

• Method 1: Higgs width can be determined directly from the measurement of $\sigma(ZH)$ and Br. of $(H->ZZ^*)$

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{{
m BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{{
m BR}(H \to ZZ^*)}$$
 Precision : 5.1%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu \bar{\nu} H \to \nu \bar{\nu} b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu \bar{\nu} H \to \nu \bar{\nu} b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision: 3.5%

• These two orthogonal methods can be combined to reach the best precision.

Precision: 2.8%

Physics reach via Higgs at CEPC

	$240 \text{GeV}, 20 \text{ab}^{-1}$		$360{ m GeV},1~{ m ab}^{-1}$		ab^{-1}
	ZH	vvH	ZH	vvH	eeH
inclusive	0.26%		1.40%	\	\
H→bb	0.14%	$\boldsymbol{1.59\%}$	0.90%	1.10%	4.30%
Н→сс	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
$H{ ightarrow}WW$	0.53%		2.80%	4.40%	6.50%
$H{ ightarrow}ZZ$	4.17%		20%	21%	
H o au au	0.42%		2.10%	4.20%	7.50%
$H o \gamma \gamma$	3.02%		11%	16%	
$H o \mu \mu$	6.36%		41%	57%	
$H o Z \gamma$	8.50%		35%		
$\boxed{ \text{Br}_{upper}(H \to inv.)}$	0.07%				
Γ_H	1.65%		1.10%		

Hadronic system (jet)

- Core of e+e- Higgs factory Physics measurements
 - 97% of CEPC Higgs events are hadronic/semileptonic
- Identify the hadronic system in semi-leptonic events
 - lepton identification & missing energy
- 4-momentum measurement of the hadronic system:
 BMR: Invariant Mass Resolution
- Jet response: essential for differential measurements
 - Color-singlet identification Identify the origin of each final state particle: Jet Clustering & Matching, or beyond?

BMR < 4% required...

- W, Z, H mass peak separation
- To separate qqH signal from qqX background with recoil mass information

Confirmed with benchmark analyses

- Boson Mass Resolution: relative mass resolution of vvH, H→gg events
 - Free of Jet Clustering
 - Be applied directly to the Higgs analyses
- The CEPC baseline reaches 3.8%

	BMR = 2%	4%	6%	8%
σ(vvH, H→bb)	2.3%	2.6%	3.0%	3.4%
σ(vvH, H→inv)	0.38%	0.4%	0.5%	0.6%
σ(qqH, H→ττ)	0.85%	0.9%	1.0%	1.1%

CEPC Baseline: BMR = 3.75%

Fig. 7 Distribution of the recoil mass of the qq, M_{qq}^{recoil} for $Z \rightarrow qq$, $H \rightarrow \tau\tau$ and each background at $\sqrt{s} = 240$ GeV after the previous cuts

@ Hadronically decayed Higgs boson: not sensitive to different modes it decays into BMR 3.6 – 3.8% for H->bb, cc, gg, WW*/ZZ*->4 jets

Improving BMR...

P. Hu & YX. Wang

...Yet, a lot more to be understood

Jets: H→bb, cc, gg

- Core physics measurements, excellent benchmarks for BMR, Flavor Tagging & Color Singlet Identification
- Tactic
 - Analysis
 - Concentrate Higgs to di jet event using Cut Chain + BDT
 - Using Flavor Tagging to disentangle different decay modes, and extract/resolve the relevant signal strengths
 - Optimization
 - Modeling the different Flavor tagging performance using interpolation method, and resolve the corresponding accuracies

Impact of Flavor tagging

$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_I - Tr_{opt}} \cdot (M_I - M_{opt}) + M_{opt}$$

$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{1/3} - Tr_{opt}} \cdot (M_{1/3} - M_{opt}) + M_{opt}$$

		Wor	st	
		b	С	g
	b	1/3	1/3	1/3
true	С	1/3	1/3	1/3
	g	1/3	1/3	1/3
		identif	ied as	

 Compared to baseline, perfect Flavor tagging improves the accuracy by 2%/63%/13% for vvH and 35%/120%/180% for qqH channels (bb, cc, gg)

New design of the VTX system

Beam pipe radius reduced from ~15 mm to 9 mm, and put the first silicon layer inside the beam pipe!

Innovative reconstruction algorithm shall also be emphasized, to achieve a better performance

Impact of Flavor tagging

- Percentage level accuracy on Vcb anticipated; using only muvqq events at 5.6 iab. Can be improved by 3-4 times... if using 20 iab and all leptonic channels, plus better analysis method
- Compared to baseline... ideal FT improves the accuracy by 2.5 times

Impact of CSI

- If we find an observable that evaluates the performance of CSI and eventually veto events with bad CSI, we can improve the accuracy on H->bb, cc, gg by ~ 2 times at qqH channel.
- Need profound understanding of QCD picture, and developments of new tools

Jet Charge

b or b-bar? c or c-bar?

Essential for CKM measurements with neutral hadron oscillations. enable differential measurements that depends on quark charge

Far future: might be well extended & combine with Jet Flavor tagging → to identify the species & charge of quark/gluon that induces a jet

$Z \rightarrow b\bar{b}$

Dependence on leading particle type

$Z \rightarrow c\bar{c}$

Dependence on leading particle type

Weighted charge method (WCJC)

Method:

- Use the charge and momentum of all final charged particles in a jet with a weight parameter κ to calculate Q_{jet}^{κ} .
- the weight parameter κ is optimized for different decay modes.
- if Q_{jet}^k<0, we consider this is a b quark, and vise versa.

$$Q_{jet}^{\kappa} = \frac{\Sigma_i(E_i)^{\kappa} Q_i}{\Sigma_i(E_i)^{\kappa}}$$

Methods	Optimized κ					
Generat or	Whizard		Herwig		Sherpa	
source	all	from B/ D	B/ all from B/		all	from B/ D
All b hadrons	(K=0.2)	(K=0)	(ĸ=0.2)	(K=0)	(ĸ=0.2)	(K=0)
B0/ B0bar	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.3)	(ĸ=0.6)
B+/B-	(ĸ=0.3)	(ĸ=0)	(ĸ=0.4)	(ĸ=0)	(ĸ=0.3)	(ĸ=0)
Bs/ Bsbar	(K=0)	(K=0)	(ĸ=0)	(K=0)	(ĸ=0.2)	(ĸ=1.0)
Bc+/Bc-	(ĸ=0.2)	(K=0)	(ĸ=0.7)	(ĸ=0)	(ĸ=0.6)	(ĸ=0)
Λb/ Λbbar	(K=0)	(ĸ=1.0)	(ĸ=0)	(ĸ=0.9)	(K=0)	(ĸ=0)

Result @ Truth level

two combination methods combination

Analysis of jet charge performance for single jet at CEPC Z pole:

- ★ Effective tagging power:
- ★ LPJC method: 0.089 / 0.203
- ★ WCJC method: 0.159 / 0.258
- ★ Decision level combination: 0.165 / 0.342 (improve 3.8% / 32.6%)
- ★ Tagger level combination: 0.182 / 0.372 (improve 14.5% / 44.2%)
- ★ Total combination 0.198 / 0.404 (improve 24.5% / 56.6%)

★ Dependences:

- High dependence on leading particle type.
- High dependence on b/c hadrons type, especially for B_s (Mingrui), Λ_b, Λ_c, ...
- High dependence on the decay source of leading particle.

At Z pole hadronic event: >7/8 time correct in guessing the charge of b/c jet

			ε _{eff}	
	е	Decision Level	0.025	
	μ	Decision Level	0.025	
b jet	К	Decision Level	0.060	
D Jet	π	Tagger Level	0.076	
	р	Decision Level	0.012	
	Total		0.198	
	е	Tagger Level	0.025	
	μ	Tagger Level	0.027	
	К	Decision Level	0.137	
- c jet	π	Tagger Level	0.186	
	р	Decision Level	0.029	
	Total		0.404	

Summary

- Electron Positron Higgs factories: a gigantic boost from LHC
 - CEPC: 4 M Higgs, ~100 Million W, 1 Million Top, and 4 Tera Z.
 - Higgs precision ~ 1 order of magnitude better compared to HL-LHC.
 - Boost the precision on EW by 1-2 orders of magnitudes.
 - Lots of opportunities for flavor physics & NP reach of 10 TeV, or higher.
 - Strong physics cases for BSM & QCD.
- CEPC Higgs precision mainly limited by statistic
 - Higher luminosity is essential
 - The physics requirement on detector performance is well understood, Significant margin to improve:
 - Detector R&D
 - Algorithms
 - Theoretical efforts: Uncertainties, Interpretation, Understanding QCD ...
 - New methodology...

Back up

Effective tagging power

- Tagging power = efficiency * $(1 2*omega)^2$
- Omega ~ chance of mis-id, value between 0 − 0.5.
- To 1st order, accuracy ~ 1/sqrt(N*tagging power).
- Tagging power highly sensitive to mis-id chance.
- Many method to measure Jet Charge: VTX charge, weighted sum, jet lepton/kaon, 2nd leading kaon, ...

Vcb from W decay

Figure 12.1: Sketch of the unitarity triangle.

$|V_{cb}| = (41.0 \pm 1.4) \times 10^{-3}$.

	b1	b2	c1 0.0197	c2	g1	g2
b	0.47	0.378	0.0197	0.0965	0.00397	0.0315
$M = \mathbf{Q}$	0.00042	0.078	0.298	0.373	0.0682	0.182
uds	0.00042 0.000104	0.00477	0.00145	0.054	0.538	0.401

Flavour tagging at Z-pole

22/3/2023 CCAST Higgs WS

Individual jet: jet clustering - matching

Fig. 7: σ and \bar{x} from the core of the DBCB fit to R are defined as JER/S, respectively. The $cos\theta_j$ indicates the specific polar angle of the jets.

Jet Clustering & Matching is critical: ee-kt is used as CEPC baseline

Relative difference between Gen/Recojet is define to be the detector jet response

Individual Jet Responses

Jet Energy Response: 2.5 – 4 times better than LHC in the same Pt range, Jet Energy Scale: 3 times better before sophisticated calibration

W-mass direct reconstruction at 240 GeV. Challenge & interesting

- W mass measurement at 240 GeV:
 - Statistic uncertainty @ 20 iab~
 - 0.3 MeV using only µvqq final state
 - Bias ~ 2.5 MeV once Z mass calibrated to known value
 - Ultimate accuracy?
 - Can we better control the systematic using the differential information?
 - Control the jet confusion?...
 - Identify & tame ISR?
 - Better calibrate?
 - Can we maintain sufficient stability over 7/10 years? ...

Quasi analysis: JES calibrated to pure ISR return qq sample

EW

With 2 years of Z pole operation (~ 1 Tera Z) and 1 year of W mass scan (~1E7 W)

Flavor Physics @ Z pole

- Extremely rich physics & strong competition from Belle-II & LHCb
- Comparative advantages of a Tera-Z
 - V.S. Bellell, Access to particles heavier than Bs, large boost
 - V.S. LHCb, much lower yields (2 orders of magnitudes) Better Acceptance, better reconstruction of neutral final state (photon, missing energy, and even Klong, neutron) and Jet Charge

Observations

- For CP measurement, a Tera-Z can compete with LHCb @ HL-LHC thanks to the capability of precise Jet Charge measurements...
- Brings lots of critical information on measurements with neutral final states...
- Yet, Pid is essential.

Lepton Flavor Violation (II)

[Calibbi et al., 2021] 2107.10273

Current Progress in LFU Tests (II)

Regular Article - Theoretical Physics | Open Access | Published: 09 June 2021 $b \rightarrow s\tau^+\tau^- \text{ physics at future } Z \text{ factories}$ Lingfeng Li & Tao Liu \boxtimes Journal of High Energy Physics 2021, Article number: 64 (2021) | Cite this article

Preliminary: 9 effective channels: $(R_{J/\psi}, R_{D_s}, R_{D_s^*}, R_{\Lambda_c}, B_c \to \tau \nu, B \to K \nu \bar{\nu}, B_s \to \phi \nu \bar{\nu}, B^0 \to K \tau \tau, B^+ \to K^+ \tau \tau, B_s \to \tau \tau...)$

Dim-6 SMEFT basis at NP scale $\Lambda=3$ TeV.

Higgs white paper delivered

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC*

Fenfen An(安芬芬)^{4,23} Yu Bai(白羽)⁹ Chunhui Chen(陈春晖)²³ Xin Chen(陈新)⁵ Zhenxing Chen(陈振) Joao Guimaraes da Costa ⁴ Zhenwei Cui(崔振崴) ³ Yaquan Fang(方亚泉) ^{4,6,34;1)} Chengdong Fu(付成栋) ⁶ Jun Gao(高俊)¹⁰ Yanyan Gao(高艳彦)²² Yuanning Gao(高原宁)³ Shaofeng Ge(葛韶锋)^{15,29} Jiayin Gu(顾嘉荫)^{13;2)} Fangyi Guo(郭方毅)^{1,4} Jun Guo(郭军)¹⁰ Tao Han(韩涛)^{5,31} Shuang Han(韩爽) Hongjian He(何红建)^{11,10} Xianke He(何显柯)¹⁰ Xiaogang He(何小刚)^{11,10,20} Jifeng Hu(胡继峰)¹⁰ Shih-Chieh Hsu(徐士杰)³² Shan Jin(金山)⁸ Maoqiang Jing(荆茂强)^{4,7} Susmita Jyotishmati³³ Ryuta Kiu Chia-Ming Kuo(郭家铭)²¹ Peizhu Lai(赖培筑)²¹ Boyang Li(李博扬)⁵ Congqiao Li(李聪乔)³ Gang Li(李 Haifeng Li(李海峰)¹² Liang Li(李亮)¹⁰ Shu Li(李数)^{11,10} Tong Li(李通)¹² Qiang Li(李强)³ Hao Liang(Zhijun Liang(梁志均)⁴ Libo Liao(廖立波)⁴ Bo Liu(刘波)^{4,23} Jianbei Liu(刘建北)¹ Tao Liu(刘涛)¹ Zhen Liu(刘真)^{26,30,4)} Xinchou Lou(娄辛丑)^{4,6,33,34} Lianliang Ma(马连良)¹² Bruce Mellado^{17,18} Xin Mo(莫欣)⁴ Mila Pandurovic¹⁶ Jianming Qian(钱剑明)^{24;5)} Zhuoni Qian(钱卓妮)¹⁹ Nikolaos Rompotis²² Manqi Ruan(阮曼奇)^{4,6)} Alex Schuy³² Lianyou Shan(单连友)⁴ Jingyuan Shi(史静远)⁹ Xin Shi(史欣)⁴ Shufang Su(苏淑芳)²⁵ Dayong Wang(王大勇)³ Jin Wang(王锦)⁴ Liantao Wang(王连涛)^{27,7)} Yifang Wang(王贻芳)^{4,6} Yuqian Wei(魏彧骞)⁴ Yue Xu(许悅)⁵ Haijun Yang(杨海军)^{10,11} Ying Yang(杨迎)⁴ Weiming Yao(姚为民)²⁸ Dan Yu(于丹)⁴ Kaili Zhang(张凯栗)^{4,6,8)} Zhaoru Zhang(张照茹)⁴ Mingrui Zhao(赵明锐)² Xianghu Zhao(赵祥虎)⁴ Ning Zhou(周宁)¹⁰

Timeline

Performance requirements

- A clear separation of the final state particles
 - Better Identify Physics Objects
 - Single particle objects: Leptons, photons, Charged hadron, isolated or inside jets
 - Composited objects:
 - With two/three final state particles: Pi-0, K-short, Lambda, Phi, Tau, D meson...
 - Jets
 - Improving the resolution for composited objects, especially jets
- BMR (Boson Mass Resolution)
 - < 4% for Higgs measurements</p>
 - Much demanding for NP tagging & Flavor Physics Measurements
- Pid: Pion & Kaon separation > 3-sigma
- Jet: Flavor Tagging & Charge Reconstruction
- Flavor Physics: requires good intrinsic Energy/Momentum resolution

BMR: no significant dependence on #jets...

Table 1. Event cumulative efficiency for Higgs boson exclusive decay at the CEPC with $\sqrt{s} = 240$ GeV.

	gg(%)	<i>bb</i> (%)	<i>cc</i> (%)	WW*(%)	ZZ* (%)
Pt_ISR < 1 GeV	95.15	95.37	95.30	95.16	95.24
Pt_neutrino < 1 GeV	89.33	39.04	66.36	37.46	41.39
Cos(Theta_Jet) < 0.85	67.30	28.65	49.31	_	_

Table 3. Higgs boson mass resolution (sigma/Mean) for different decay modes with jets as final state particles, after event cleaning.

$H \rightarrow bb$	$H \rightarrow cc$	$H \rightarrow gg$	$H \to WW^*$	$H \rightarrow ZZ^*$
3.63%	3.82%	3.75%	3.81%	3.74%

46

ST Higgs WS

Lepton: isolated

CEPC Preliminary $z \rightarrow \mu^{i}\mu$; $\int Ldt = 5 \text{ ab}^{-1}$ -- CEPC Simulation
-- S+B Fit
-- Signal
-- Background

120
125
130
135
140 $M_{recoil}^{\mu^{+}\mu}[GeV]$

130

 $M_{recoil}^{e^+e^-}[GeV]$

BDT method using 4 classes of 24 input discrimination variables.

Test performance at: Electron = E_likeness > 0.5; Muon = Mu_likeness > 0.5 Single charged reconstructed particle, for E > 2 GeV: lepton efficiency > 99.5% && Pion mis id rate ~ 1%

> https://link.springer.com/article/10.1140/epjc/s10052-017-5146-5 CEPC-DocDB-id:148, Eur. Phys. J. C (2017) 77: 591

120

125

135

140

Lepton: inside jet

Compared the single particle sample, the jet lepton (at Z->bb sample at sqrt = 91.2 GeV) Performance will be slightly degraded – Due to the limited clustering performance (splitting & containination).

At the same working point, the efficiency can be reduced by up to 3%; while mis-id rate increases up to 1%. Marginal Impact on Flavor Physics measurements as Bc->tauv.

Taus: isolated or inside jets

(a) $Z \rightarrow qq, H \rightarrow \tau\tau$ with two hadronic decay.

(c) $Z \to b\overline{b}$, $B_c \to \tau \nu$ with one hadronic dacay.

(b) $WW \rightarrow \tau \nu qq$ with one leptonic decay.

(d) $Z \to b\overline{b}, B_s \to \tau\tau$ with two hadronic decay mixed together.

22/3/2023

(c) $Z \to b\overline{b}$, $B_c \to \tau \nu$, efficiency=1, purity=0.5 (d) $Z \to b\overline{b}$, $B_s \to \tau \tau$, efficiency=0.5, purity=0.167

(b) $WW \rightarrow \tau \nu qq$, efficiency=1, purity=1

Tau id

- (a) Efficiency and purity performance along with polar angle θ , parameters fixed.
- (b) Efficiency and purity performance along with visible energy. The performance above 80 GeV falls as a result of stringent cone selection.

(a) Efficiency and purity performance along with polar angle θ , parameters fixed.

(a) Efficiency and purity performance along with polar angle θ , parameters fixed.

(b) Efficiency and purity performance along with visible energy

(a) Efficiency and purity performance along with polar angle θ , parameters fixed.

(b) Efficiency and purity performance along with visible energy

B Anomalies Indicating LFUV

	Experimental	SM Prediction	Comments
$\overline{R_K}$	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01	$m_{\ell\ell} \in [1.0, 6.0] \text{ GeV}^2$, via B^{\pm} .
R_{K^*}	$0.69^{+0.12}_{-0.09}$	0.996 ± 0.002	$m_{\ell\ell} \in [1.1, 6.0] \; GeV^2$, via B^0 .
R_D	0.340 ± 0.030	0.299 ± 0.003	B^0 and B^{\pm} combined.
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005	B^0 and B^\pm combined.
$R_{J/\psi}$	$0.71 \pm 0.17 \pm 0.18$	0.25-0.28	

[Tanabashi et al., 2018][Altmannshofer et al., 2018].

Bs→Phi vv

https://arxiv.org/pdf/2201.07374.pdf

The penguin and box diagrams of $b \to s\nu\bar{\nu}$ transition at the leading order.

- Key ingredient to understand FCNC anomaly...
- Critical Physics Objects: Phi (and charged Kaon), 2nd VTX, Missing E/P, b-jet at opposite side
- Percentage level accuracy anticipated at Tera-Z

Bs→Phi vv

The separation power is defined as $2|\mu_{\pi} - \mu_{K}|/(\sigma_{\pi} + \sigma_{K})$. Without loss of generality, we set $\sigma_{\pi} = \sigma_{K}$. Com-

Bs→Jpsi/Phi

	LHCb(HL-LHC)	CEPC(Tera-Z)	CEPC/LHCb
$bar{b}$ statics	43.2×10^{12}	0.152×10^{12}	1/284
Acceptance×efficiency	7%	75%	10.7
Br	6×10^{-6}	12×10^{-6}	2
Flavour tagging	4.7%	20%	4.3
Time resolution $(\exp(-rac{1}{2}\Delta m_s^2{\sigma_t^2}^2)$	0.52	1	1.92
scaling factor ξ	0.0014	0.0019	0.8
$\sigma(\phi_s)$	3.3 mrad	4.3 mrad	

Preliminary...

$B_s/B^0 \rightarrow 2 \text{ pi0/eta}$

Preliminary...

Figure 12: Accuracy of $B^0 \to \pi^0 \pi^0$ (left) and $B_s^0 \to \pi^0 \pi^0$ (right) versus B mass resolution.

- Provide sub percentage level accuracies on B0->2 pi0, 40/5 times than current world average & Belle II anticipation, have a strong impact on the CKM angle (alpha measurements), discover the other three modes for the 1st time.
- Strongly Depends on the b-tagging performance (ILD is good enough) and the ECAL intrinsic resolution (provide 30 MeV mass resolution for B-meson... 5 times better than ILD ECAL)

The 4th Conceptual Detector Design

+ innovative software system...

6

Jet charge

Z o bar b Percent of final charged leading particles of b jet and ar b jet Z o car c Percent of final charged leading particles of c jet and ar c jet

The distribution of each charged particle of two jets is asymmetry

... we understand how the jet charge information eventually incarnated into Leading final state particles...

22/3/2023

AST Higgs WS

58