

Exploring New Physics related to Dark Matter at Higgs factories

Xiao-Ping Wang (王小平) Mar, 23 @ CCAST

Base On: JHEP 06 (2017) 077 Phys.Rev.D 97 (2018) 9 arXiv:2210.09335

Successful of SM

The field of HEP has been vibrant & exciting! HEP has enjoyed the remarkable achievement of 50⁺-year uninterrupted discoveries! From quarks to the Higgs boson, with heroic efforts in theory and experiments: 60's 70's 90's 2012

A highly successful theory

Credit: Tao Han

New Physics related to dark sector

.

Future lepton collider

•	•	•	•	•	•	•	•	•	•	٠	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•

	Hadron Collider	Lepton Collider
Signal	MET+X	MET+(X)
Control C.M. Energy	No	Yes
MET reconstruction	No	Yes
Background	Huge	Small
EWPT	Reasonable	Extreme

- A' search at e-e+ collider
- Higgs Portal search at e-e+ collider
- ALP for muon g-2 tested at e+e- collider

6

• Summary

Vector Portal DM

* Vector Portal Lagrangian

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + \frac{\epsilon}{2c_W} B_{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu} A'_{\mu\nu} A'_{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu} A'_{\mu\nu} A'_{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu\nu} A'^{\mu\nu} A'_{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu\nu} A'^{\mu\nu} A'^{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^{\mu\nu} A'^{\mu\nu}$$

* Vector Mixing

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \\ A'_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \frac{m_{A'}^2 t_W}{-m_{A'}^2 + m_Z^2} \epsilon \\ 0 & 1 & \epsilon \\ \frac{m_Z^2 t_W}{m_{A'}^2 - m_Z^2} \epsilon & 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{Z}_{\mu} \\ \tilde{A}'_{\mu} \\ \tilde{A}'_{\mu} \end{pmatrix}$$

Interaction

 $\mathcal{L}_{\text{int}} = \tilde{Z}_{\mu} \left(g J_{Z}^{\mu} - g_{D} \frac{m_{Z}^{2} t_{W}}{m_{Z}^{2} - m_{A'}^{2}} \epsilon J_{D}^{\mu} \right) + \tilde{A'}_{\mu} \left(g_{D} J_{D}^{\mu} + g \frac{m_{A'}^{2} t_{W}}{m_{Z}^{2} - m_{A'}^{2}} \epsilon J_{Z}^{\mu} + e \epsilon J_{\text{em}}^{\mu} \right)$ J.L, L-T.W, X-P Wang, W.X, T Phys.Rev.D 97 (2018) 9

Vector Portal DM

* Complex scalar DM Lagrangian:

8

* Dark Sector Search @ Z factory

Constraint results

- A' search at e-e+ collider
- Higgs Portal search at e-e+ collider
- ALP for muon g-2 tested at e+e- collider

10

• Summary

Higgs Portal DM

* Higgs Portal Lagrangian:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \lambda_1 \left(H^{\dagger} H \right) S - \lambda_2 \left(H^{\dagger} H \right) S^2 + \bar{\chi} \left(i \partial^{\mu} \gamma_{\mu} - m_{\chi}^0 \right) \chi - y_{\chi} S \bar{\chi} \chi + \dots$$

* Scalar Mixing

$$\begin{pmatrix} \tilde{h} \\ \tilde{s} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

Relic abundance and Direct detection

J.L, L-T.W, **X-P Wang**, W.X, Phys.Rev.D 97 (2018) 9

Higgs Portal DM

•	•	•	•	•	•	•	•	•	•	٠	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	

* Z factory Search

-
- • • •
-
-
- • • •
- • • •
-
-
- • • •
-

Higgs Portal DM

* Z factory Search

Vector+ Higgs Portal

Dark Portal:

14

UV complete model

$$\begin{aligned} \mathscr{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W_{\mu\nu}^{i} W^{i,\mu\nu} - \frac{1}{4} K_{\mu\nu} K^{\mu\nu} + \frac{\epsilon}{2\cos\theta_{W}} B_{\mu\nu} K^{\mu\nu} \\ + \left| D_{\mu} H \right|^{2} + \mu_{H}^{2} |H|^{2} - \lambda_{H} |H|^{4} + \left| D_{\mu} \Phi \right|^{2} + \mu_{D}^{2} |\Phi|^{2} - \lambda_{D} |\Phi|^{4} - \lambda_{HP} |H|^{2} |\Phi|^{2} \\ + \bar{\chi} \left(i\gamma^{\mu} D_{\mu} - m_{\chi} \right) \chi \\ \mathscr{L} \supset m_{Z,SM}^{2} \frac{\cos\alpha}{v_{H}} \tilde{Z}_{\mu} \tilde{Z}^{\mu} H_{0} - m_{K}^{2} \frac{\sin\alpha}{v_{D}} \tilde{K}_{\mu} \tilde{K}^{\mu} H_{0} \\ + 2\epsilon t_{W} \frac{m_{K}^{2} m_{Z,SM}^{2}}{\left(m_{Z,SM}^{2} - m_{K}^{2}\right)} \left(\frac{\cos\alpha}{v_{H}} + \frac{\sin\alpha}{v_{D}} \right) \tilde{Z}_{\mu} \tilde{K}^{\mu} H_{0} \\ + m_{Z,SM}^{2} \frac{\sin\alpha}{v_{H}} \tilde{Z}_{\mu} \tilde{Z}^{\mu} S + m_{K}^{2} \frac{\cos\alpha}{v_{D}} \tilde{K}_{\mu} \tilde{K}^{\mu} S \\ + 2\epsilon t_{W} \frac{m_{K}^{2} m_{Z,SM}^{2}}{\left(m_{Z,SM}^{2} - m_{K}^{2}\right)} \left(-\frac{\cos\alpha}{v_{D}} + \frac{\sin\alpha}{v_{H}} \right) \tilde{Z}_{\mu} \tilde{K}^{\mu} S \\ + 2\epsilon t_{W} \frac{m_{K}^{2} m_{Z,SM}^{2}}{\left(m_{Z,SM}^{2} - m_{K}^{2}\right)} \left(-\frac{\cos\alpha}{v_{D}} + \frac{\sin\alpha}{v_{H}} \right) \tilde{Z}_{\mu} \tilde{K}^{\mu} S \\ + 2\epsilon t_{W} \frac{m_{K}^{2} m_{Z,SM}^{2}}{\left(m_{Z,SM}^{2} - m_{K}^{2}\right)} \left(-\frac{\cos\alpha}{v_{D}} + \frac{\sin\alpha}{v_{H}} \right) \tilde{Z}_{\mu} \tilde{K}^{\mu} S \\ + 2\epsilon t_{W} \frac{m_{K}^{2} m_{Z,SM}^{2}}{\left(m_{Z,SM}^{2} - m_{K}^{2}\right)} \left(-\frac{\cos\alpha}{v_{D}} + \frac{\sin\alpha}{v_{H}} \right) \tilde{Z}_{\mu} \tilde{K}^{\mu} S \\ J.L, X-P. Wang, F.Y, JHEP 06 (2017) 077 \end{aligned}$$

16

DM indirect detection

17

Collider search

•	•	•	٠	•	•	•	•	•	•	•	•	
٠	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	

Pheno	$\sin lpha$	ϵ				
Electroweak	$e^+e^- \to \tilde{Z}S$	$e^+e^- \to f\bar{f}$				
Precision	LEP	LEP				
	$H_0 o SS o 4(\chi \bar{\chi})$,	$H_0 ightarrow ilde{K} ilde{K} ightarrow 2(\chi ar{\chi})$				
Higgs	LHC					
Drell-Van		$p\bar{p} \to \tilde{Z}, \tilde{K} \to l^+ l^-$				
Dien-Tan		LHC				
Dadiativa		$e^+e^- \to \tilde{A}\tilde{K}$				
naulative		Babar				
•						

Prospects for Higgs factory

$$m_X = \sqrt{s + m_Y^2 - 2E_Y\sqrt{s}}$$

Prospects for CEPC

20

- A' search at e-e+ collider
- Higgs Portal search at e-e+ collider
- ALP for muon g-2 tested at e+e- collider

21

• Summary

Axion-like Particle

 \mathcal{Z}_{γ}

* Lagrangian:

 $\mathcal{L}_{\rm ALP} = \frac{1}{4\Lambda_{aBB}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$

* Search @ Z factory

* Constraints

Anomalous magnetic moment of the lepton

Positive value and a 4.2 σ (Fermilab + Brookhaven)

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\th} = (25.1 \pm 5.9) \times 10^{-10}$$

Physics About BROWSE PRESS COLLECTIONS Highlights

PHYSICAL REVIEW LETTERS

Recent Accepted Collections Authors Referees Search Press

The Era of Anomalies

May 14, 2020 • Physics 13, 79

Particle physicists are faced with a growing list of "anomalies"—experir standard model but fail to overturn it for lack of sufficient evidence.

BNL.p2 FNAL.p2 4.20 Dianded Model

ON THE COVER

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm April 7, 2021

New muon magnetic moment data from a Fermilab experiment (red) combined with previous Brookhaven National Lab data (blue) is in 4.2 σ tension with the value calculated by the Muon g-2 Theory Initiative (green). Selected for a Viewpoint in *Physics* and an Editors' Suggestion.

B. Abi *et al.* (Muon *g* – 2 Collaboration) Phys. Rev. Lett. **126**, 141801 (2021)

Issue 14 Table of Contents | More Covers Yannis K. Semertzidis, IBS-CAPP and KAIST

The Scalar for Muon g-2

The (pseudo)scalar Yukawa coupling to lepton

$$\mathscr{L}_{\text{yuk}} = \phi \bar{\ell} \left(g_R + i g_I \gamma_5 \right) \ell$$

The 1-loop contribution to g-2

$$\Delta a_{\ell} = \frac{1}{8\pi^2} \int_0^1 dx \frac{(1-x)^2 \left((1+x)g_R^2 - (1-x)g_I^2\right)}{(1-x)^2 + x \left(m_{\phi}/m_{\ell}\right)^2}$$

- For scalar, $\Delta a_{\ell} > 0$
- For (psudo)scalar, $\Delta a_{\ell} < 0$

Further requirement for pseudo-scalar

$$\mathscr{L} = i y_{a\psi} a \bar{\psi} \gamma_5 \psi + \frac{1}{4} g_{a\gamma\gamma} a \tilde{F} F$$

• Assumes $g_{a\gamma\gamma}$ remains essentially constant throughout the integration over virtual photon-loop momentum

 $g_{a\gamma\gamma}$ and $y_{a\ell}$ can adjust its sign to give positive result

- In g-2 solution region, mostly decay to $a \rightarrow \mu^+ \mu^-$
- The inclusion of Z diagram makes some difference for large m_a
- Exotic Z decay should happen

J.L, X.-L.M,L-T.W, **X-P,Wang,** arXiv:2210.09335

Existing constraints $C_{ww} = 0$

- Constraining $a-\gamma$ coupling only:
 - Belle-II, LEP: $e^+e^- \rightarrow a\gamma \rightarrow (\gamma\gamma)\gamma$
 - LHC: $pp \rightarrow a\gamma \rightarrow (\gamma\gamma)\gamma$

Existing constraints $C_{ww} = 0$

- Constraining *a*-μ coupling only:
 - BaBar: recast $e^+e^- \rightarrow \mu^+\mu^-Z'$
 - CMS(4 μ): $pp \rightarrow \mu^+ \mu^- \phi$

J.L, X.-L.M,L-T.W, **X-P,Wang**, arXiv:2210.09335

29

Existing constraints $C_{ww} = 0$

- Constraining both coupling
 - CMS($\overline{t}t + 2\mu$): $pp \rightarrow \overline{t}t\phi \rightarrow \overline{t}t(\mu^+\mu^-)$

30

- A' search at e-e+ collider
- Higgs Portal search at e-e+ collider
- ALP for muon g-2 tested at e+e- collider

31

• Summary

Exotic Z decay Topology

exotic decay	topologies	n _{res}	models	exotic decay	topologies	n _{res}	models
	$Z \to \chi_1 \chi_2, \chi_2 \to \chi_1 \gamma$	0	$2\mathbf{A}: \frac{1}{\Lambda} \bar{\chi_2} c$	I	$Z \to \phi_d A', \phi_d \to jj, A' \to jj$	2	6A: Vec
	$Z \to \chi \bar{\chi} \gamma$	0	2B: $\frac{1}{\Lambda^3}\bar{\chi}$	$Z \to (JJ)(JJ)$	$Z \to \phi_d A', \phi_d \to b\bar{b}, A' \to jj$	2	6B: vect
$\Sigma \rightarrow \psi + \gamma$	$Z \to a\gamma \to (\not\!\!\!E)\gamma$	1	2C: $\frac{1}{\Lambda_{2C}}$		$Z \to \phi_d A', \phi_d \to b\bar{b}, A' \to b\bar{b}$	2	6C: vect
	$Z \to A'\gamma \to (\bar{\chi}\chi)\gamma$	1	2D: $\epsilon^{\mu\nu\rho\sigma}$	$Z \to \gamma \gamma \gamma$	$Z \to \phi \gamma \to (\gamma \gamma) \gamma$	1	7A: AL]
	$Z \to \phi_d A', \phi_d \to (\gamma \gamma), A' \to (\bar{\chi} \chi)$	2	3A: Vect				
$Z \to \not\!\!\!\! E + \gamma \gamma$	$ \begin{array}{c} Z \to \phi_H \phi_A, \ \phi_H \to (\gamma \gamma), \ \phi_A \to \\ (\bar{\chi} \chi) \end{array} $	2	3B: 2HD				
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$	1	3C: Inela				
	$Z \to \chi_2 \chi_2, \chi_2 \to \gamma \chi_1$	0	3D: MID	l			
$Z \to E + \ell^+ \ell^-$	$\begin{bmatrix} Z \to \phi_d A', \ A' \to (\ell^+ \ell^-), \ \phi_d \to (\bar{\chi}\chi) \end{bmatrix}$	2	4A: Vect				
	$Z \to A'SS \to (\ell\ell)SS$	1	4B: Vect				
	$Z \to \phi(Z^*/\gamma^*) \to \phi \ell^+ \ell^-$	1	4C: Long				
	$Z \to \chi_2 \chi_1 \to \chi_1 A' \chi_1 \to (\ell^+ \ell^-) \not\!\!\!E$	1	4D: Vect				
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \ell^+ \ell^-$	0	4E: MID				
	$Z \to \bar{\chi} \chi \ell^+ \ell^-$	0	4F: Ray				
• •			32		<i></i> J.L, L-T.W, X-P Phys.Rev.D 97	Wan (201	g , W.X, 8) 9

