

 $\overline{\mathbf{V}} = \mathbf{V}$

nucleus

Neutrinoless Double Beta Decay in the Colored Zee-Babu Model

Yu-Qi Xiao (肖雨奇) Central China Normal University

In collaboration with Shao-Long Chen arXiv:2205.13118

nucleus

Ve

第二届无中微子双贝塔衰变及相关物理研讨会 2023.05.19-2023.05.23 广东珠海

OUTLINE

- Brief Introduction
- Short-Range mechanism of $0\nu\beta\beta$
- $0\nu\beta\beta$ in the cZB model-
- Summary

2νββ

2023.05.21

n

nucleus

n

Ve

Yu-Qi Xiao (CCNU)

Π

 $\overline{\mathbf{V}} = \mathbf{V}$

nucleus

Ονββ

n

e⁻

Brief Introduction

J. Schechter, J. W. F. Valle, 1982

Probe the nature of neutrinos Majorana neutrino or Dirac neutrino?

- Any neutrinoless double beta decay process induces a Majorana mass term.
- The Majorana mass term may be too small to account for the neutrino oscillation.

M. Duerr, M. Lindner, A. Merle, **1105.0901**

 generate neutrino masses by the Majorana neutrino mass model or other mechanisms

2023.05.21

PART I

Brief Introduction

sta

standard neutrino exchange

$$(T_{1/2}^{0\nu\beta\beta})^{-1} = G_{0\nu} |M_{0\nu}|^2 \frac{|\langle m_{ee} \rangle|}{m_e^2}$$

$$|\langle m_{ee} \rangle| = |\sum_{i=1}^3 U_{ei}^2 m_i|$$

KamLAND-Zen (¹³⁶Xe) $T_{1/2}^{0\nu\beta\beta} > 1.07 \times 10^{26}$ yrs GERDA (⁷⁶Ge) $T_{1/2}^{0\nu\beta\beta} > 1.8 \times 10^{26}$ yrs

Brief Introduction

PART I

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ... **Possible isotopes**

⁷⁶Ge CDEX LEGEND

LEGEND-1000

¹³⁶Xe PandaX-4T

¹⁰⁰Mo

CUPID-Mo

• Brief Introduction

• Short-Range mechanism of $0\nu\beta\beta$

The Effective Field Theory Approach

2023.05.21

Yu-Qi Xiao (CCNU)

The Short-Range Contribution

D۸	D	Т	TT
ΓF	\mathbf{N}		

 $(\overline{\mathbf{3}}, \mathbf{2})_{-1/6}$ $(\overline{\mathbf{3}}, \mathbf{2})_{-1/6}$

(11						
${\cal O} \propto u ar{u} dd ar{e} ar{e}$				Mediators $(SU(3)_c, SU(2)_L)_{U(1)_Y}$		
$n \searrow p$		#	Operators	S	S'	S''
e		1	$(\overline{u_L}d_R)(\overline{u_L}d_R)(\overline{e_Le_L})$	$(1, 2)_{+1/2}$	$(1, 2)_{+1/2}$	$(1, 3)_{-1}$
				$({f 8},{f 2})_{+1/2}$	$({f 8},{f 2})_{+1/2}$	$(1,3)_{-1}$
$\mathcal{O}_{\mathbf{Q}}$			$(\overline{u_R}d_L)(\overline{u_L}d_R)(\overline{e_Le_L})$	$({f 1},{f 2})_{+1/2}$	$({f 1},{f 2})_{+1/2}$	$(1,3)_{-1}$
				$({f 8},{f 2})_{+1/2}$	$({f 8},{f 2})_{+1/2}$	$(1,3)_{-1}$
			$(\overline{u_R}d_L)(\overline{u_R}d_L)(\overline{e_Le_L})$	$({f 1},{f 2})_{+1/2}$	$({f 1},{f 2})_{+1/2}$	$(1,3)_{-1}$
$n \checkmark p$				$({f 8},{f 2})_{+1/2}$	$({f 8},{f 2})_{+1/2}$	$(1,3)_{-1}$
ζ ζ		2	$(\overline{u_L}d_R)(\overline{u_Le_L})(d_R\overline{e_L})$	$({f 1},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$({\overline{\bf 3}},{f 2})_{-1/6}$
				$({f 1},{f 2})_{+1/2}$	$({f 3},{f 3})_{-1/3}$	$(\overline{3},2)_{-1/6}$
				$({f 8},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$({\overline{f 3}},{f 2})_{-1/6}$
				$({f 8},{f 2})_{+1/2}$	$({f 3},{f 3})_{-1/3}$	$(\overline{3},2)_{-1/6}$
			$(\overline{u_L}d_R)(\overline{u_Re_R})(d_R\overline{e_L})$	$({f 1},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$({\overline{\bf 3}},{f 2})_{-1/6}$
				$({f 8},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$({\overline{\bf 3}},{f 2})_{-1/6}$
$\bigvee S F V'/S'$			$(\overline{u_R}d_L)(\overline{u_Le_L})(d_R\overline{e_L})$	$({f 1},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$({\bf \overline{3}},{\bf 2})_{-1/6}$
				$({f 1},{f 2})_{+1/2}$	$({f 3},{f 3})_{-1/3}$	$({\overline{\bf 3}},{f 2})_{-1/6}$
Topology I				$({f 8},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$(\overline{\bf 3},{\bf 2})_{-1/6}$
				$({f 8},{f 2})_{+1/2}$	$({f 3},{f 3})_{-1/3}$	$({\overline{\bf 3}},{f 2})_{-1/6}$
	Losen V		$(\overline{u_R}d_L)(\overline{u_Re_R})(d_R\overline{e_L})$	$({f 1},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$(\overline{\bf 3},{\bf 2})_{-1/6}$
				$({f 8},{f 2})_{+1/2}$	$({f 3},{f 1})_{-1/3}$	$({\overline{\bf 3}},{f 2})_{-1/6}$
		3	$(\overline{u_L u_L})(d_R d_R)(\overline{e_L e_L})$	$({f 6},{f 3})_{+1/3}$	$(\overline{6},1)_{+2/3}$	$(1,3)_{-1}$
$\mathbf{X} = \mathbf{S} \mathbf{V} / \mathbf{S}$			$(\overline{u_R u_R})(d_L d_L)(\overline{e_L e_L})$	$({f 6},{f 1})_{+4/3}$	$({\bf 6},{\bf 3})_{-1/3}$	$({f 1},{f 3})_{-1}$
			$(\overline{u_R u_R})(d_R d_R)(\overline{e_R e_R})$	$(6, 1)_{+4/3}$	$({f 6},{f 1})_{+2/3}$	$(1,1)_{-2}$
V'/S' V''/S''		4	$(\overline{u_L u_L})(d_R \overline{e_L})(d_R \overline{e_L})$	$(6, 3)_{+1/3}$	$(3, 2)_{-1/6}$	$(3, 2)_{-1/6}$
			$(\overline{u_R u_R})(d_L \overline{e_R})(d_R \overline{e_L})$	$(6, 1)_{+4/3}$	$({f 3},{f 2})_{-7/6}$	$(3,2)_{-1/6}$
Topology II		5	$(\overline{u_L e_L})(\overline{u_L e_L})(d_R d_R)$	$(3,1)_{-1/3}$	$({f 3},{f 1})_{-1/3}$	$({f 6},{f 1})_{+2/3}$
				$(3,3)_{-1/3}$	$(3,3)_{-1/3}$	$({f 6},{f 1})_{+2/3}$
F. Bonnet, M. Hirsch, T. Ota,			$(\overline{u_L e_L})(\overline{u_R e_R})(d_R d_R)$	$(3,1)_{-1/3}$	$(3,1)_{-1/3}$	$(6, 1)_{+2/3}$
W. Winter, 1212.3045			$(\overline{u_R e_R})(\overline{u_R e_R})(d_R d_R)$	$(3,1)_{-1/3}$	$(3,1)_{-1/3}$	$({f 6},{f 1})_{+2/3}$

2023.05.21

Yu-Qi Xiao (CCNU)

The Short-Range Contribution

One-loop realization

2023.05.21

Yu-Qi Xiao (CCNU)

The Short-Range Contribution

PART II

There is some interplay between the standard mechanism and short-range contribution.

comprehensive analysis see F. F. Deppisch, L. Graf, F. Iachello, J. Kotila, **2009.10119**

PART III

• Brief Introduction

- Short-Range mechanism of $0\nu\beta\beta$
- $0\nu\beta\beta$ in the cZB model-
 - Summary

nucleus

n

Ve

n

e⁻

2νββ

n

 $\overline{\mathbf{V}} = \mathbf{V}$

nucleus

Ονββ

n

e⁻

The Colored Zee-Babu Model

S. Saad, **2205.04352**; S.-Y. Guo, Z.-L. Han, B. Li, Y. Liao, X.-D. Ma, **1707.00522**, ...

Datta, D. Sachdeva, J. Waite, **1905.04046**

• The extension of cZB models e.g. +DM candidate $S + U(1)_{B-L}$, solve Fermi-LAT GC γ -ray excess

> R. Ding, Z.-L. Han, L. Huang, Y. Liao,**1802.05248**

Constraints

tree-level flavor violation (four-fermion interaction)

$$\epsilon_{ijkn} \equiv \frac{(Y_L)_{ik}(Y_L)_{jn}}{4\sqrt{2}G_F m_S^2} \qquad \text{model-independent analysis was done by} \\ \mathcal{L}_{\text{eff},1} = \frac{1}{2M_{S_1}^2} \left\{ (V^* y_{1SL})^{*ki} (V^* y_{1SL})^{nj} [\overline{E^i} \gamma_\mu P_L E^j] [\overline{U^k} \gamma^\mu P_L U^n] + \ldots \right\}. \\ \mathcal{L}_{\text{eff},2} = \frac{1}{2M_{S_3}^2} \left\{ (V^* y_{3S})^{*ki} (V^* y_{3S})^{nj} [\overline{E^i} \gamma^\mu P_L E^j] [\overline{U^k} \gamma_\mu P_L U^n] + \ldots \right\}. \\ \mathcal{L}_{\text{eff},3} = -\frac{y_{2S}^{*ki} y_{2S}^{nj}}{2M_{S_2}^2} \left\{ [\overline{E^i} \gamma^\mu P_L E^j] [\overline{D^k} \gamma_\mu P_R D^n] + [\overline{\nu^i} \gamma^\mu P_L \nu^j] [\overline{D^k} \gamma_\mu P_R D^n] \right\}.$$

 $K - \overline{K}, B_d - \overline{B}_d, B_s - \overline{B}_s$ mixing

 $(g-2)_l, l_i \to l_j \gamma$ $\Delta a_\mu(S_1) \simeq \frac{3m_\mu^2}{8\pi^2 M_{S_1}^2} \frac{m_t}{m_\mu} \operatorname{Re}[y_{1SR}^{32} y_{1SL}'^{*32}] \left[\frac{1}{3} f_1\left(\frac{m_t^2}{m_{S_1}^2}\right) + \frac{2}{3} f_2\left(\frac{m_t^2}{m_{S_1}^2}\right) \right]$

2023.05.21

PART III

The Colored Zee-Babu Model

PART III

(one LQ + one DQ)

case 1: a singlet LQ $S_1 \sim (\overline{3}, 1, 1/3)$ a singlet DQ $\omega_1 \sim (6, 1, -2/3)$

case 3: a doublet LQ $\tilde{S}_2 \sim (3, 2, 1/6)$ a triplet DQ $\omega_3 \sim (6, 3, 1/3)$

case 2: a triplet LQ $S_3 \sim (\overline{3}, 3, 1/3)$ a singlet DQ $\omega_1 \sim (6, 1, -2/3)$

$$M_{\nu_{a}}^{kn} = 24\mu_{a} [y_{bS(L)}^{T}]^{kl} m_{D^{l}} z_{c\omega}^{lm} m_{D^{m}} y_{bS(L)}^{mn} \mathcal{I}_{lm}$$

$$\mathcal{I}_{lm} = \int \frac{d^4k}{(2\pi)^4} \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_{D^l}^2} \frac{1}{q^2 - M_S^2} \\ \times \frac{1}{k^2 - M_S^2} \frac{1}{k^2 - m_{D^m}^2} \frac{1}{(k - q)^2 - M_\omega^2}$$

Neutrinoless Double Beta Decay

• SR contributions

$$\begin{split} &(\overline{u_L u_L})(d_R \overline{e_L})(d_R \overline{e_L}) \to \frac{1}{48} \mathcal{O}_1^{RRL} - \frac{1}{192} \mathcal{O}_2^{RRL} \\ &\epsilon_1^{RRL} = -\frac{1}{48} \frac{2m_p}{G_F^2 V_{ud}^2} \frac{4(y_{2S}^{*11})^2 (V^* z_{3\omega} V^{\dagger})^{11} \mu_3}{M_{S_2}^4 M_{\omega_3}^2} \,, \quad \epsilon_2^{RRL} = -\frac{1}{4} \epsilon_1^{RRL} \,. \end{split}$$

RGE
$$\mu$$
-evolution
 \mathcal{M}_{1}^{XX}
 $\mathcal{M}_{1}^{XX} \to \beta_{1}^{XX} = 2.39 \mathcal{M}_{1}^{XX} - 3.83 \mathcal{M}_{2}^{XX}$

 matrix elements
 $\hat{U}_{(12)}^{XX} = \begin{pmatrix} 2.39 & 0.02 \\ -3.83 & 0.35 \end{pmatrix}$
 $\mathcal{M}_{1}^{XX} \to \beta_{1}^{XX} = 2.39 \mathcal{M}_{1}^{XX} - 3.83 \mathcal{M}_{2}^{XX}$

 M. Gonzalez, S.G. Kovalenko,
 $\hat{U}_{(12)}^{XX} = \begin{pmatrix} 2.39 & 0.02 \\ -3.83 & 0.35 \end{pmatrix}$
 $\mathcal{M}_{2}^{XX} \to \beta_{2}^{XX} = 0.02 \mathcal{M}_{1}^{XX} + 0.35 \mathcal{M}_{2}^{XX}$

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}}$$

If there is no signal, the **survival region** will be reduced to the **overlap** area.

 $\frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \begin{cases} \text{similar ratio value in} \\ \frac{76}{\text{Ge and}} \\ \frac{136}{\text{Xe}} \\ \text{different in} \\ \frac{100}{\text{Mo}} \end{cases}$

With the **high sensitivity** of future experiments, the survival band can be **examined comprehensively**.

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}}$$

If there is no signal, the **survival region** will be reduced to the **overlap** area.

 $\frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \begin{cases} \text{similar ratio value in} \\ ^{76}\text{Ge and} \\ ^{136}\text{Xe} \\ \text{different in} \\ ^{100}\text{Mo} \end{cases}$

With the **high sensitivity** of future experiments, the survival band can be **examined comprehensively**.

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}}$$

If there is no signal, the **survival region** will be reduced to the **overlap** area.

 $\frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \begin{cases} \text{similar ratio value in} \\ \frac{76}{\text{Ge and}} \\ \frac{136}{\text{Xe}} \\ \text{different in} \\ \frac{100}{\text{Mo}} \end{cases}$

With the **high sensitivity** of future experiments, the survival band can be **examined comprehensively**.

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}}$$

If there is no signal, the **survival region** will be reduced to the **overlap** area.

 $\frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \begin{cases} \text{similar ratio value in} \\ ^{76}\text{Ge and} \\ ^{136}\text{Xe} \\ \text{different in} \\ ^{100}\text{Mo} \end{cases}$

With the **high sensitivity** of future experiments, the survival band can be **examined comprehensively**.

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}}$$

If there is no signal, the **survival region** will be reduced to the **overlap** area.

 $\frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \begin{cases} \text{similar ratio value in} \\ ^{76}\text{Ge and} \\ ^{136}\text{Xe} \\ \text{different in} \\ ^{100}\text{Mo} \end{cases}$

With the **high sensitivity** of future experiments, the survival band can be **examined comprehensively**.

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}}$$

If there is no signal, the **survival region** will be reduced to the **overlap** area.

 $\frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \begin{cases} \text{similar ratio value in} \\ ^{76}\text{Ge and} \\ ^{136}\text{Xe} \\ \text{different in} \\ ^{100}\text{Mo} \end{cases}$

With the **high sensitivity** of future experiments, the survival band can be **examined comprehensively**.

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}}$$

If there is no signal, the **survival region** will be reduced to the **overlap** area.

 $\frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \begin{cases} \text{similar ratio value in} \\ \frac{76}{\text{Ge and}} \\ \frac{136}{\text{Xe}} \\ \text{different in} \\ \frac{100}{\text{Mo}} \end{cases}$

With the **high sensitivity** of future experiments, the survival band can be **examined comprehensively**.

Neutrinoless Double Beta Decay

2023.05.21

Yu-Qi Xiao (CCNU)

SUMMARY

- Consider three cases of the colored Zee-Babu model
- Focus on the interplay of standard neutrino exchange and short-range contribution of neutrinoless double beta decay
- Find that neutrinoless double beta decay can be hidden under certain condition
- The condition can be examined comprehensively by future complementary searches with different isotopes.

Thank you for your attention

involving repeated fields.

 $D_R \omega^2 = -z (D_R)^2 D_R$ leads to $z^{11} = 0$

Only LQ contribute?

- The LQ in case 3 cannot contribute to $0\nu\beta\beta$
- In case 1 and case 2: LQ contribution $\simeq 10^{-4} \times$ Standard contribution

2023.05.21

Yu-Qi Xiao (CCNU)

Backup

BACKUP

Results Many-body model dependent?

MSSM with R-parity violating

$$T_{\mathrm{SR},1/2}^{-1} = G_{\nu} \left| \frac{\langle m_{ee} \rangle}{m_e} \mathcal{M}_{\nu} + \epsilon \mathcal{M}_{\mathrm{SR}} \right|^2$$

• The contributions cancel exactly

$$\epsilon = -\frac{\mathcal{M}_{\nu}}{\mathcal{M}_{\rm SR}} \frac{\langle m_{ee} \rangle}{m_e}$$

• For different isotopes *X*, the slopes are different.

$$\epsilon(X) = -\frac{\mathcal{M}_{\nu}(X)}{\mathcal{M}_{\mathrm{SR}}(X)} \frac{\langle m_{ee} \rangle}{m_e} \pm \left[T_{\mathrm{SR},1/2}(X) G_{\nu}(X) \right]^{-1/2}$$

M. Agostini, F. F. Deppisch, G. V. Goffrier, **2212.00045**

BACKUP

Nuclear Matrix Elements and their Estimation

Energy-density Functional (EDF) theory

Interacting Boson Model (IBM)

Quasi-particle Random-Phase Approximation (QRPA)

Multivariate Gaussian distribution over the NMEs

$$\mathbf{m} = (M_{\nu}(^{76}\text{Ge}), M_{\nu}(^{100}\text{Mo}), M_{\nu}(^{136}\text{Xe}))^T$$

$$\mathcal{N}(\mathbf{m}) = rac{1}{\sqrt{(2\pi)^3 \det(\Sigma)}} \exp\left[-rac{1}{2} \left(\mathbf{m} - \boldsymbol{\mu}
ight)^T \cdot \Sigma^{-1} \cdot \left(\mathbf{m} - \boldsymbol{\mu}
ight)^T$$

M. Agostini, F. F. Deppisch, G. V. Goffrier, **2212.00045**

2023.05.21

Backup